MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgge0 Structured version   Visualization version   GIF version

Theorem itgge0 24108
Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgge0.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgge0.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgge0.3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgge0 (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgge0
StepHypRef Expression
1 itgz 24078 . 2 𝐴0 d𝑥 = 0
2 fconstmpt 5458 . . . 4 (𝐴 × {0}) = (𝑥𝐴 ↦ 0)
3 itgge0.1 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
4 iblmbf 24065 . . . . . . 7 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 itgge0.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
75, 6mbfdm2 23935 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 ibl0 24084 . . . . 5 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
97, 8syl 17 . . . 4 (𝜑 → (𝐴 × {0}) ∈ 𝐿1)
102, 9syl5eqelr 2865 . . 3 (𝜑 → (𝑥𝐴 ↦ 0) ∈ 𝐿1)
11 0red 10437 . . 3 ((𝜑𝑥𝐴) → 0 ∈ ℝ)
12 itgge0.3 . . 3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
1310, 3, 11, 6, 12itgle 24107 . 2 (𝜑 → ∫𝐴0 d𝑥 ≤ ∫𝐴𝐵 d𝑥)
141, 13syl5eqbrr 4959 1 (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2050  {csn 4435   class class class wbr 4923  cmpt 5002   × cxp 5399  dom cdm 5401  cr 10328  0cc0 10329  cle 10469  volcvol 23761  MblFncmbf 23912  𝐿1cibl 23915  citg 23916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407  ax-addf 10408
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-disj 4892  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-2o 7900  df-oadd 7903  df-er 8083  df-map 8202  df-pm 8203  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-sup 8695  df-inf 8696  df-oi 8763  df-dju 9118  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-n0 11702  df-z 11788  df-uz 12053  df-q 12157  df-rp 12199  df-xadd 12319  df-ioo 12552  df-ico 12554  df-icc 12555  df-fz 12703  df-fzo 12844  df-fl 12971  df-mod 13047  df-seq 13179  df-exp 13239  df-hash 13500  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-clim 14700  df-sum 14898  df-xmet 20234  df-met 20235  df-ovol 23762  df-vol 23763  df-mbf 23917  df-itg1 23918  df-itg2 23919  df-ibl 23920  df-itg 23921  df-0p 23968
This theorem is referenced by:  itgabs  24132  areaf  25235  fdvposle  31520  itgabsnc  34402  fourierdlem47  41869
  Copyright terms: Public domain W3C validator