![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgge0 | Structured version Visualization version GIF version |
Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
itgge0.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
itgge0.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
itgge0.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
itgge0 | ⊢ (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgz 25654 | . 2 ⊢ ∫𝐴0 d𝑥 = 0 | |
2 | fconstmpt 5729 | . . . 4 ⊢ (𝐴 × {0}) = (𝑥 ∈ 𝐴 ↦ 0) | |
3 | itgge0.1 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
4 | iblmbf 25641 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
6 | itgge0.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
7 | 5, 6 | mbfdm2 25510 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
8 | ibl0 25660 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 × {0}) ∈ 𝐿1) |
10 | 2, 9 | eqeltrrid 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ∈ 𝐿1) |
11 | 0red 11216 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℝ) | |
12 | itgge0.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
13 | 10, 3, 11, 6, 12 | itgle 25683 | . 2 ⊢ (𝜑 → ∫𝐴0 d𝑥 ≤ ∫𝐴𝐵 d𝑥) |
14 | 1, 13 | eqbrtrrid 5175 | 1 ⊢ (𝜑 → 0 ≤ ∫𝐴𝐵 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 {csn 4621 class class class wbr 5139 ↦ cmpt 5222 × cxp 5665 dom cdm 5667 ℝcr 11106 0cc0 11107 ≤ cle 11248 volcvol 25336 MblFncmbf 25487 𝐿1cibl 25490 ∫citg 25491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-disj 5105 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-ofr 7665 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12976 df-xadd 13094 df-ioo 13329 df-ico 13331 df-icc 13332 df-fz 13486 df-fzo 13629 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-hash 14292 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-clim 15434 df-sum 15635 df-xmet 21227 df-met 21228 df-ovol 25337 df-vol 25338 df-mbf 25492 df-itg1 25493 df-itg2 25494 df-ibl 25495 df-itg 25496 df-0p 25543 |
This theorem is referenced by: itgabs 25708 areaf 26834 fdvposle 34132 itgabsnc 37061 fourierdlem47 45415 |
Copyright terms: Public domain | W3C validator |