Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubnc Structured version   Visualization version   GIF version

Theorem itgsubnc 37188
Description: Choice-free analogue of itgsub 25775. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsubnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)
Assertion
Ref Expression
itgsubnc (𝜑 → ∫𝐴(𝐵𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgsubnc
StepHypRef Expression
1 ibladdnc.2 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25717 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25585 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . . 7 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 25717 . . . . . . 7 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 25585 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
1110negcld 11596 . . . 4 ((𝜑𝑥𝐴) → -𝐶 ∈ ℂ)
129, 6iblneg 25752 . . . 4 (𝜑 → (𝑥𝐴 ↦ -𝐶) ∈ 𝐿1)
135, 10negsubd 11615 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
1413mpteq2dva 5252 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵 + -𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
15 iblsubnc.m . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)
1614, 15eqeltrd 2829 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 + -𝐶)) ∈ MblFn)
175, 1, 11, 12, 16itgaddnc 37186 . . 3 (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴-𝐶 d𝑥))
189, 6itgneg 25753 . . . 4 (𝜑 → -∫𝐴𝐶 d𝑥 = ∫𝐴-𝐶 d𝑥)
1918oveq2d 7442 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥) = (∫𝐴𝐵 d𝑥 + ∫𝐴-𝐶 d𝑥))
2017, 19eqtr4d 2771 . 2 (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥))
2113itgeq2dv 25731 . 2 (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = ∫𝐴(𝐵𝐶) d𝑥)
224, 1itgcl 25733 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
239, 6itgcl 25733 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 ∈ ℂ)
2422, 23negsubd 11615 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥) = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥))
2520, 21, 243eqtr3d 2776 1 (𝜑 → ∫𝐴(𝐵𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5235  (class class class)co 7426  cc 11144   + caddc 11149  cmin 11482  -cneg 11483  MblFncmbf 25563  𝐿1cibl 25566  citg 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673  df-rest 17411  df-topgen 17432  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22816  df-topon 22833  df-bases 22869  df-cmp 23311  df-ovol 25413  df-vol 25414  df-mbf 25568  df-itg1 25569  df-itg2 25570  df-ibl 25571  df-itg 25572  df-0p 25619
This theorem is referenced by:  itgmulc2nclem2  37193  itgmulc2nc  37194  ftc1cnnclem  37197
  Copyright terms: Public domain W3C validator