Proof of Theorem itgneg
Step | Hyp | Ref
| Expression |
1 | | itgcnval.2 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
2 | | iblmbf 24913 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | | itgcnval.1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
5 | 3, 4 | mbfmptcl 24781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
6 | 5 | recld 14886 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
7 | 5 | iblcn 24944 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
8 | 1, 7 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
9 | 8 | simpld 494 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
10 | 6, 9 | itgcl 24929 |
. . . 4
⊢ (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ) |
11 | | ax-icn 10914 |
. . . . 5
⊢ i ∈
ℂ |
12 | 5 | imcld 14887 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
13 | 8 | simprd 495 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
14 | 12, 13 | itgcl 24929 |
. . . . 5
⊢ (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) |
15 | | mulcl 10939 |
. . . . 5
⊢ ((i
∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i ·
∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
16 | 11, 14, 15 | sylancr 586 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
17 | 10, 16 | negdid 11328 |
. . 3
⊢ (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
18 | | 0re 10961 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
19 | | ifcl 4509 |
. . . . . . . 8
⊢
(((ℜ‘𝐵)
∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈
ℝ) |
20 | 6, 18, 19 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈
ℝ) |
21 | 6 | iblre 24939 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤
(ℜ‘𝐵),
(ℜ‘𝐵), 0))
∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈
𝐿1))) |
22 | 9, 21 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈
𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈
𝐿1)) |
23 | 22 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈
𝐿1) |
24 | 20, 23 | itgcl 24929 |
. . . . . 6
⊢ (𝜑 → ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 ∈ ℂ) |
25 | 6 | renegcld 11385 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐵) ∈ ℝ) |
26 | | ifcl 4509 |
. . . . . . . 8
⊢
((-(ℜ‘𝐵)
∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈
ℝ) |
27 | 25, 18, 26 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈
ℝ) |
28 | 22 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈
𝐿1) |
29 | 27, 28 | itgcl 24929 |
. . . . . 6
⊢ (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 ∈ ℂ) |
30 | 24, 29 | negsubdi2d 11331 |
. . . . 5
⊢ (𝜑 → -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)) |
31 | 6, 9 | itgreval 24942 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)) |
32 | 31 | negeqd 11198 |
. . . . 5
⊢ (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)) |
33 | 5 | negcld 11302 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℂ) |
34 | 33 | recld 14886 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘-𝐵) ∈ ℝ) |
35 | 4, 1 | iblneg 24948 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈
𝐿1) |
36 | 33 | iblcn 24944 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ -𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘-𝐵)) ∈
𝐿1))) |
37 | 35, 36 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘-𝐵)) ∈
𝐿1)) |
38 | 37 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘-𝐵)) ∈
𝐿1) |
39 | 34, 38 | itgreval 24942 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥)) |
40 | 5 | renegd 14901 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵)) |
41 | 40 | breq2d 5090 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤
-(ℜ‘𝐵))) |
42 | 41, 40 | ifbieq1d 4488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤
-(ℜ‘𝐵),
-(ℜ‘𝐵),
0)) |
43 | 42 | itgeq2dv 24927 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) |
44 | 40 | negeqd 11198 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵)) |
45 | 6 | recnd 10987 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
46 | 45 | negnegd 11306 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵)) |
47 | 44, 46 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵)) |
48 | 47 | breq2d 5090 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤
(ℜ‘𝐵))) |
49 | 48, 47 | ifbieq1d 4488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤
(ℜ‘𝐵),
(ℜ‘𝐵),
0)) |
50 | 49 | itgeq2dv 24927 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥) |
51 | 43, 50 | oveq12d 7286 |
. . . . . 6
⊢ (𝜑 → (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)) |
52 | 39, 51 | eqtrd 2779 |
. . . . 5
⊢ (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)) |
53 | 30, 32, 52 | 3eqtr4d 2789 |
. . . 4
⊢ (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = ∫𝐴(ℜ‘-𝐵) d𝑥) |
54 | | mulneg2 11395 |
. . . . . 6
⊢ ((i
∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i ·
-∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) |
55 | 11, 14, 54 | sylancr 586 |
. . . . 5
⊢ (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) |
56 | | ifcl 4509 |
. . . . . . . . . . 11
⊢
(((ℑ‘𝐵)
∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈
ℝ) |
57 | 12, 18, 56 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈
ℝ) |
58 | 12 | iblre 24939 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤
(ℑ‘𝐵),
(ℑ‘𝐵), 0))
∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈
𝐿1))) |
59 | 13, 58 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈
𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈
𝐿1)) |
60 | 59 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈
𝐿1) |
61 | 57, 60 | itgcl 24929 |
. . . . . . . . 9
⊢ (𝜑 → ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 ∈ ℂ) |
62 | 12 | renegcld 11385 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐵) ∈ ℝ) |
63 | | ifcl 4509 |
. . . . . . . . . . 11
⊢
((-(ℑ‘𝐵)
∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈
ℝ) |
64 | 62, 18, 63 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈
ℝ) |
65 | 59 | simprd 495 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈
𝐿1) |
66 | 64, 65 | itgcl 24929 |
. . . . . . . . 9
⊢ (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 ∈ ℂ) |
67 | 61, 66 | negsubdi2d 11331 |
. . . . . . . 8
⊢ (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)) |
68 | 5 | imnegd 14902 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵)) |
69 | 68 | breq2d 5090 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤
-(ℑ‘𝐵))) |
70 | 69, 68 | ifbieq1d 4488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤
-(ℑ‘𝐵),
-(ℑ‘𝐵),
0)) |
71 | 70 | itgeq2dv 24927 |
. . . . . . . . 9
⊢ (𝜑 → ∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) |
72 | 68 | negeqd 11198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵)) |
73 | 12 | recnd 10987 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
74 | 73 | negnegd 11306 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵)) |
75 | 72, 74 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵)) |
76 | 75 | breq2d 5090 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤
(ℑ‘𝐵))) |
77 | 76, 75 | ifbieq1d 4488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤
(ℑ‘𝐵),
(ℑ‘𝐵),
0)) |
78 | 77 | itgeq2dv 24927 |
. . . . . . . . 9
⊢ (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥) |
79 | 71, 78 | oveq12d 7286 |
. . . . . . . 8
⊢ (𝜑 → (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)) |
80 | 67, 79 | eqtr4d 2782 |
. . . . . . 7
⊢ (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥)) |
81 | 12, 13 | itgreval 24942 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)) |
82 | 81 | negeqd 11198 |
. . . . . . 7
⊢ (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)) |
83 | 33 | imcld 14887 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘-𝐵) ∈ ℝ) |
84 | 37 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘-𝐵)) ∈
𝐿1) |
85 | 83, 84 | itgreval 24942 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(ℑ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥)) |
86 | 80, 82, 85 | 3eqtr4d 2789 |
. . . . . 6
⊢ (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = ∫𝐴(ℑ‘-𝐵) d𝑥) |
87 | 86 | oveq2d 7284 |
. . . . 5
⊢ (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥)) |
88 | 55, 87 | eqtr3d 2781 |
. . . 4
⊢ (𝜑 → -(i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥)) |
89 | 53, 88 | oveq12d 7286 |
. . 3
⊢ (𝜑 → (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥))) |
90 | 17, 89 | eqtrd 2779 |
. 2
⊢ (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥))) |
91 | 4, 1 | itgcnval 24945 |
. . 3
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
92 | 91 | negeqd 11198 |
. 2
⊢ (𝜑 → -∫𝐴𝐵 d𝑥 = -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
93 | 33, 35 | itgcnval 24945 |
. 2
⊢ (𝜑 → ∫𝐴-𝐵 d𝑥 = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥))) |
94 | 90, 92, 93 | 3eqtr4d 2789 |
1
⊢ (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥) |