MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgneg Structured version   Visualization version   GIF version

Theorem itgneg 24397
Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgneg (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24361 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24230 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65recld 14546 . . . . 5 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
75iblcn 24392 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
81, 7mpbid 234 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
98simpld 497 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
106, 9itgcl 24377 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
11 ax-icn 10589 . . . . 5 i ∈ ℂ
125imcld 14547 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
138simprd 498 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
1412, 13itgcl 24377 . . . . 5 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
15 mulcl 10614 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1611, 14, 15sylancr 589 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1710, 16negdid 11003 . . 3 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)))
18 0re 10636 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4504 . . . . . . . 8 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
206, 18, 19sylancl 588 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
216iblre 24387 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
229, 21mpbid 234 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
2322simpld 497 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2420, 23itgcl 24377 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
256renegcld 11060 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
26 ifcl 4504 . . . . . . . 8 ((-(ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2725, 18, 26sylancl 588 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2822simprd 498 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
2927, 28itgcl 24377 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
3024, 29negsubdi2d 11006 . . . . 5 (𝜑 → -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
316, 9itgreval 24390 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
3231negeqd 10873 . . . . 5 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
335negcld 10977 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
3433recld 14546 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
354, 1iblneg 24396 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
3633iblcn 24392 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
3735, 36mpbid 234 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1))
3837simpld 497 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
3934, 38itgreval 24390 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥))
405renegd 14561 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
4140breq2d 5071 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
4241, 40ifbieq1d 4483 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
4342itgeq2dv 24375 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)
4440negeqd 10873 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
456recnd 10662 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4645negnegd 10981 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
4744, 46eqtrd 2855 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
4847breq2d 5071 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
4948, 47ifbieq1d 4483 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
5049itgeq2dv 24375 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)
5143, 50oveq12d 7167 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5239, 51eqtrd 2855 . . . . 5 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5330, 32, 523eqtr4d 2865 . . . 4 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = ∫𝐴(ℜ‘-𝐵) d𝑥)
54 mulneg2 11070 . . . . . 6 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
5511, 14, 54sylancr 589 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
56 ifcl 4504 . . . . . . . . . . 11 (((ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5712, 18, 56sylancl 588 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5812iblre 24387 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
5913, 58mpbid 234 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
6059simpld 497 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
6157, 60itgcl 24377 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6212renegcld 11060 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
63 ifcl 4504 . . . . . . . . . . 11 ((-(ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6462, 18, 63sylancl 588 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6559simprd 498 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
6664, 65itgcl 24377 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6761, 66negsubdi2d 11006 . . . . . . . 8 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
685imnegd 14562 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
6968breq2d 5071 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
7069, 68ifbieq1d 4483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
7170itgeq2dv 24375 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)
7268negeqd 10873 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
7312recnd 10662 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
7473negnegd 10981 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
7572, 74eqtrd 2855 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
7675breq2d 5071 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
7776, 75ifbieq1d 4483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
7877itgeq2dv 24375 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)
7971, 78oveq12d 7167 . . . . . . . 8 (𝜑 → (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
8067, 79eqtr4d 2858 . . . . . . 7 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8112, 13itgreval 24390 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8281negeqd 10873 . . . . . . 7 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8333imcld 14547 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
8437simprd 498 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
8583, 84itgreval 24390 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8680, 82, 853eqtr4d 2865 . . . . . 6 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = ∫𝐴(ℑ‘-𝐵) d𝑥)
8786oveq2d 7165 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8855, 87eqtr3d 2857 . . . 4 (𝜑 → -(i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8953, 88oveq12d 7167 . . 3 (𝜑 → (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9017, 89eqtrd 2855 . 2 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
914, 1itgcnval 24393 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9291negeqd 10873 . 2 (𝜑 → -∫𝐴𝐵 d𝑥 = -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9333, 35itgcnval 24393 . 2 (𝜑 → ∫𝐴-𝐵 d𝑥 = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9490, 92, 933eqtr4d 2865 1 (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  ifcif 4460   class class class wbr 5059  cmpt 5139  cfv 6348  (class class class)co 7149  cc 10528  cr 10529  0cc0 10530  ici 10532   + caddc 10533   · cmul 10535  cle 10669  cmin 10863  -cneg 10864  cre 14449  cim 14450  MblFncmbf 24208  𝐿1cibl 24211  citg 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-ofr 7403  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12890  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-xmet 20531  df-met 20532  df-ovol 24058  df-vol 24059  df-mbf 24213  df-itg1 24214  df-itg2 24215  df-ibl 24216  df-itg 24217  df-0p 24264
This theorem is referenced by:  itgsub  24419  itgsubnc  34996  itgmulc2nc  35002  sqwvfourb  42595
  Copyright terms: Public domain W3C validator