MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgneg Structured version   Visualization version   GIF version

Theorem itgneg 24873
Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgneg (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24837 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24705 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65recld 14833 . . . . 5 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
75iblcn 24868 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
81, 7mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
98simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
106, 9itgcl 24853 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
11 ax-icn 10861 . . . . 5 i ∈ ℂ
125imcld 14834 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
138simprd 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
1412, 13itgcl 24853 . . . . 5 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
15 mulcl 10886 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1611, 14, 15sylancr 586 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1710, 16negdid 11275 . . 3 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)))
18 0re 10908 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4501 . . . . . . . 8 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
206, 18, 19sylancl 585 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
216iblre 24863 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
229, 21mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
2322simpld 494 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2420, 23itgcl 24853 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
256renegcld 11332 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
26 ifcl 4501 . . . . . . . 8 ((-(ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2725, 18, 26sylancl 585 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2822simprd 495 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
2927, 28itgcl 24853 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
3024, 29negsubdi2d 11278 . . . . 5 (𝜑 → -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
316, 9itgreval 24866 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
3231negeqd 11145 . . . . 5 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
335negcld 11249 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
3433recld 14833 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
354, 1iblneg 24872 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
3633iblcn 24868 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
3735, 36mpbid 231 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1))
3837simpld 494 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
3934, 38itgreval 24866 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥))
405renegd 14848 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
4140breq2d 5082 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
4241, 40ifbieq1d 4480 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
4342itgeq2dv 24851 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)
4440negeqd 11145 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
456recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4645negnegd 11253 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
4744, 46eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
4847breq2d 5082 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
4948, 47ifbieq1d 4480 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
5049itgeq2dv 24851 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)
5143, 50oveq12d 7273 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5239, 51eqtrd 2778 . . . . 5 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5330, 32, 523eqtr4d 2788 . . . 4 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = ∫𝐴(ℜ‘-𝐵) d𝑥)
54 mulneg2 11342 . . . . . 6 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
5511, 14, 54sylancr 586 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
56 ifcl 4501 . . . . . . . . . . 11 (((ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5712, 18, 56sylancl 585 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5812iblre 24863 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
5913, 58mpbid 231 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
6059simpld 494 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
6157, 60itgcl 24853 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6212renegcld 11332 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
63 ifcl 4501 . . . . . . . . . . 11 ((-(ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6462, 18, 63sylancl 585 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6559simprd 495 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
6664, 65itgcl 24853 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6761, 66negsubdi2d 11278 . . . . . . . 8 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
685imnegd 14849 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
6968breq2d 5082 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
7069, 68ifbieq1d 4480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
7170itgeq2dv 24851 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)
7268negeqd 11145 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
7312recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
7473negnegd 11253 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
7572, 74eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
7675breq2d 5082 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
7776, 75ifbieq1d 4480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
7877itgeq2dv 24851 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)
7971, 78oveq12d 7273 . . . . . . . 8 (𝜑 → (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
8067, 79eqtr4d 2781 . . . . . . 7 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8112, 13itgreval 24866 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8281negeqd 11145 . . . . . . 7 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8333imcld 14834 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
8437simprd 495 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
8583, 84itgreval 24866 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8680, 82, 853eqtr4d 2788 . . . . . 6 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = ∫𝐴(ℑ‘-𝐵) d𝑥)
8786oveq2d 7271 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8855, 87eqtr3d 2780 . . . 4 (𝜑 → -(i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8953, 88oveq12d 7273 . . 3 (𝜑 → (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9017, 89eqtrd 2778 . 2 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
914, 1itgcnval 24869 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9291negeqd 11145 . 2 (𝜑 → -∫𝐴𝐵 d𝑥 = -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9333, 35itgcnval 24869 . 2 (𝜑 → ∫𝐴-𝐵 d𝑥 = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9490, 92, 933eqtr4d 2788 1 (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  -cneg 11136  cre 14736  cim 14737  MblFncmbf 24683  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739
This theorem is referenced by:  itgsub  24895  itgsubnc  35766  itgmulc2nc  35772  sqwvfourb  43660
  Copyright terms: Public domain W3C validator