MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnval Structured version   Visualization version   GIF version

Theorem itgcnval 24378
Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnval (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgcnval
StepHypRef Expression
1 eqid 2820 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2 eqid 2820 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
3 eqid 2820 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
4 eqid 2820 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5 itgcnval.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 itgcnval.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
71, 2, 3, 4, 5, 6itgcnlem 24368 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))) + (i · ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))))))
8 iblmbf 24346 . . . . . . 7 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
96, 8syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
109, 5mbfmptcl 24215 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
1110recld 14529 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1210iblcn 24377 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
136, 12mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1413simpld 497 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1511, 14itgrevallem1 24373 . . 3 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))))
1610imcld 14530 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
1713simprd 498 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
1816, 17itgrevallem1 24373 . . . 4 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))))
1918oveq2d 7145 . . 3 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))))))
2015, 19oveq12d 7147 . 2 (𝜑 → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))) + (i · ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))))))
217, 20eqtr4d 2858 1 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ifcif 4439   class class class wbr 5038  cmpt 5118  cfv 6327  (class class class)co 7129  cr 10510  0cc0 10511  ici 10513   + caddc 10514   · cmul 10516  cle 10650  cmin 10844  -cneg 10845  cre 14432  cim 14433  MblFncmbf 24193  2citg2 24195  𝐿1cibl 24196  citg 24197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-inf2 9078  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589  ax-addf 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-disj 5004  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-of 7383  df-ofr 7384  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-2o 8077  df-oadd 8080  df-er 8263  df-map 8382  df-pm 8383  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-sup 8880  df-inf 8881  df-oi 8948  df-dju 9304  df-card 9342  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-n0 11873  df-z 11957  df-uz 12219  df-q 12324  df-rp 12365  df-xadd 12483  df-ioo 12717  df-ico 12719  df-icc 12720  df-fz 12873  df-fzo 13014  df-fl 13142  df-mod 13218  df-seq 13350  df-exp 13411  df-hash 13672  df-cj 14434  df-re 14435  df-im 14436  df-sqrt 14570  df-abs 14571  df-clim 14821  df-sum 15019  df-xmet 20510  df-met 20511  df-ovol 24043  df-vol 24044  df-mbf 24198  df-itg1 24199  df-itg2 24200  df-ibl 24201  df-itg 24202  df-0p 24249
This theorem is referenced by:  itgre  24379  itgim  24380  itgneg  24382  itgconst  24397  itgadd  24403  itgmulc2  24412  itgaddnc  34989  itgmulc2nc  34997
  Copyright terms: Public domain W3C validator