MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Structured version   Visualization version   GIF version

Theorem iblabs 25746
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabs.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblabs (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iblabs
StepHypRef Expression
1 absf 15263 . . . . 5 abs:ℂ⟶ℝ
21a1i 11 . . . 4 (𝜑 → abs:ℂ⟶ℝ)
3 iblabs.2 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
4 iblmbf 25684 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
53, 4syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 iblabs.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
75, 6mbfmptcl 25553 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
82, 7cofmpt 7070 . . 3 (𝜑 → (abs ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵)))
97fmpttd 7053 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 ax-resscn 11085 . . . . . . 7 ℝ ⊆ ℂ
11 ssid 3960 . . . . . . 7 ℂ ⊆ ℂ
12 cncfss 24808 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
1310, 11, 12mp2an 692 . . . . . 6 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
14 abscncf 24810 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
1513, 14sselii 3934 . . . . 5 abs ∈ (ℂ–cn→ℂ)
1615a1i 11 . . . 4 (𝜑 → abs ∈ (ℂ–cn→ℂ))
17 cncombf 25575 . . . 4 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑥𝐴𝐵)) ∈ MblFn)
185, 9, 16, 17syl3anc 1373 . . 3 (𝜑 → (abs ∘ (𝑥𝐴𝐵)) ∈ MblFn)
198, 18eqeltrrd 2829 . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
207abscld 15364 . . . . . . . 8 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
2120rexrd 11184 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
227absge0d 15372 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
23 elxrge0 13378 . . . . . . 7 ((abs‘𝐵) ∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤ (abs‘𝐵)))
2421, 22, 23sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
25 0e0iccpnf 13380 . . . . . . 7 0 ∈ (0[,]+∞)
2625a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
2724, 26ifclda 4514 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
2827adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
2928fmpttd 7053 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
30 reex 11119 . . . . . . . . 9 ℝ ∈ V
3130a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
327recld 15119 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3332recnd 11162 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
3433abscld 15364 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
3533absge0d 15372 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
36 elrege0 13375 . . . . . . . . . . 11 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
3734, 35, 36sylanbrc 583 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
38 0e0icopnf 13379 . . . . . . . . . . 11 0 ∈ (0[,)+∞)
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
4037, 39ifclda 4514 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
4140adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
427imcld 15120 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4342recnd 11162 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4443abscld 15364 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4543absge0d 15372 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
46 elrege0 13375 . . . . . . . . . . 11 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
4744, 45, 46sylanbrc 583 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
4847, 39ifclda 4514 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
4948adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
50 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
51 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
5231, 41, 49, 50, 51offval2 7637 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
53 iftrue 4484 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
54 iftrue 4484 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
5553, 54oveq12d 7371 . . . . . . . . . 10 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
56 iftrue 4484 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
5755, 56eqtr4d 2767 . . . . . . . . 9 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
58 00id 11309 . . . . . . . . . 10 (0 + 0) = 0
59 iffalse 4487 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
60 iffalse 4487 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
6159, 60oveq12d 7371 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
62 iffalse 4487 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
6358, 61, 623eqtr4a 2790 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
6457, 63pm2.61i 182 . . . . . . . 8 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
6564mpteq2i 5191 . . . . . . 7 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
6652, 65eqtr2di 2781 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
6766fveq2d 6830 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
68 eqid 2729 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
697iblcn 25716 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
703, 69mpbid 232 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
7170simpld 494 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
726, 3, 68, 71, 32iblabslem 25745 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
7372simpld 494 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
7441fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
7572simprd 495 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
76 eqid 2729 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
7770simprd 495 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
786, 3, 76, 77, 42iblabslem 25745 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
7978simpld 494 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn)
8049fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
8178simprd 495 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
8273, 74, 75, 79, 80, 81itg2add 25676 . . . . 5 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
8367, 82eqtrd 2764 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
8475, 81readdcld 11163 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
8583, 84eqeltrd 2828 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
8634, 44readdcld 11163 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
8786rexrd 11184 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ*)
8834, 44, 35, 45addge0d 11714 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
89 elxrge0 13378 . . . . . . . 8 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ* ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
9087, 88, 89sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞))
9190, 26ifclda 4514 . . . . . 6 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
9291adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
9392fmpttd 7053 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞))
94 ax-icn 11087 . . . . . . . . . . . 12 i ∈ ℂ
95 mulcl 11112 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
9694, 43, 95sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
9733, 96abstrid 15384 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
987replimd 15122 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
9998fveq2d 6830 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
100 absmul 15219 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
10194, 43, 100sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
102 absi 15211 . . . . . . . . . . . . . 14 (abs‘i) = 1
103102oveq1i 7363 . . . . . . . . . . . . 13 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
10444recnd 11162 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
105104mullidd 11152 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
106103, 105eqtrid 2776 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘i) · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
107101, 106eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
108107oveq2d 7369 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
10997, 99, 1083brtr4d 5127 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
110 iftrue 4484 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
111110adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
11256adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
113109, 111, 1123brtr4d 5127 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
114113ex 412 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
115 0le0 12247 . . . . . . . . 9 0 ≤ 0
116115a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
117 iffalse 4487 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
118116, 117, 623brtr4d 5127 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
119114, 118pm2.61d1 180 . . . . . 6 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
120119ralrimivw 3125 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
121 eqidd 2730 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
122 eqidd 2730 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
12331, 28, 92, 121, 122ofrfval2 7638 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
124120, 123mpbird 257 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
125 itg2le 25656 . . . 4 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
12629, 93, 124, 125syl3anc 1373 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
127 itg2lecl 25655 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
12829, 85, 126, 127syl3anc 1373 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
12920, 22iblpos 25710 . 2 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
13019, 128, 129mpbir2and 713 1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  r cofr 7616  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167  cle 11169  [,)cico 13268  [,]cicc 13269  cre 15022  cim 15023  abscabs 15159  cnccncf 24785  MblFncmbf 25531  2citg2 25533  𝐿1cibl 25534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-0p 25587
This theorem is referenced by:  iblmulc2  25748  itgabs  25752  bddmulibl  25756  itgcn  25762  ftc1a  25960  ftc1lem4  25962  itgulm  26333  fourierdlem47  46135  fourierdlem87  46175  etransclem23  46239
  Copyright terms: Public domain W3C validator