MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Structured version   Visualization version   GIF version

Theorem iblabs 24432
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabs.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblabs (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iblabs
StepHypRef Expression
1 absf 14689 . . . . 5 abs:ℂ⟶ℝ
21a1i 11 . . . 4 (𝜑 → abs:ℂ⟶ℝ)
3 iblabs.2 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
4 iblmbf 24371 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
53, 4syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 iblabs.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
75, 6mbfmptcl 24240 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
82, 7cofmpt 6871 . . 3 (𝜑 → (abs ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵)))
97fmpttd 6856 . . . 4 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
11 ssid 3937 . . . . . . 7 ℂ ⊆ ℂ
12 cncfss 23504 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
1310, 11, 12mp2an 691 . . . . . 6 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
14 abscncf 23506 . . . . . 6 abs ∈ (ℂ–cn→ℝ)
1513, 14sselii 3912 . . . . 5 abs ∈ (ℂ–cn→ℂ)
1615a1i 11 . . . 4 (𝜑 → abs ∈ (ℂ–cn→ℂ))
17 cncombf 24262 . . . 4 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑥𝐴𝐵)) ∈ MblFn)
185, 9, 16, 17syl3anc 1368 . . 3 (𝜑 → (abs ∘ (𝑥𝐴𝐵)) ∈ MblFn)
198, 18eqeltrrd 2891 . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
207abscld 14788 . . . . . . . 8 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
2120rexrd 10680 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
227absge0d 14796 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
23 elxrge0 12835 . . . . . . 7 ((abs‘𝐵) ∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤ (abs‘𝐵)))
2421, 22, 23sylanbrc 586 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
25 0e0iccpnf 12837 . . . . . . 7 0 ∈ (0[,]+∞)
2625a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
2724, 26ifclda 4459 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
2827adantr 484 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
2928fmpttd 6856 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
30 reex 10617 . . . . . . . . 9 ℝ ∈ V
3130a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
327recld 14545 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3332recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
3433abscld 14788 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
3533absge0d 14796 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
36 elrege0 12832 . . . . . . . . . . 11 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
3734, 35, 36sylanbrc 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
38 0e0icopnf 12836 . . . . . . . . . . 11 0 ∈ (0[,)+∞)
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
4037, 39ifclda 4459 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
4140adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
427imcld 14546 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4342recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4443abscld 14788 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4543absge0d 14796 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
46 elrege0 12832 . . . . . . . . . . 11 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
4744, 45, 46sylanbrc 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
4847, 39ifclda 4459 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
4948adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
50 eqidd 2799 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
51 eqidd 2799 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
5231, 41, 49, 50, 51offval2 7406 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
53 iftrue 4431 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
54 iftrue 4431 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
5553, 54oveq12d 7153 . . . . . . . . . 10 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
56 iftrue 4431 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
5755, 56eqtr4d 2836 . . . . . . . . 9 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
58 00id 10804 . . . . . . . . . 10 (0 + 0) = 0
59 iffalse 4434 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
60 iffalse 4434 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
6159, 60oveq12d 7153 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
62 iffalse 4434 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
6358, 61, 623eqtr4a 2859 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
6457, 63pm2.61i 185 . . . . . . . 8 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
6564mpteq2i 5122 . . . . . . 7 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
6652, 65eqtr2di 2850 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
6766fveq2d 6649 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
68 eqid 2798 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
697iblcn 24402 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
703, 69mpbid 235 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
7170simpld 498 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
726, 3, 68, 71, 32iblabslem 24431 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
7372simpld 498 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
7441fmpttd 6856 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
7572simprd 499 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
76 eqid 2798 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
7770simprd 499 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
786, 3, 76, 77, 42iblabslem 24431 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
7978simpld 498 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn)
8049fmpttd 6856 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
8178simprd 499 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
8273, 74, 75, 79, 80, 81itg2add 24363 . . . . 5 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
8367, 82eqtrd 2833 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
8475, 81readdcld 10659 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
8583, 84eqeltrd 2890 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
8634, 44readdcld 10659 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
8786rexrd 10680 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ*)
8834, 44, 35, 45addge0d 11205 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
89 elxrge0 12835 . . . . . . . 8 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ* ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
9087, 88, 89sylanbrc 586 . . . . . . 7 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞))
9190, 26ifclda 4459 . . . . . 6 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
9291adantr 484 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
9392fmpttd 6856 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞))
94 ax-icn 10585 . . . . . . . . . . . 12 i ∈ ℂ
95 mulcl 10610 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
9694, 43, 95sylancr 590 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
9733, 96abstrid 14808 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
987replimd 14548 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
9998fveq2d 6649 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
100 absmul 14646 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
10194, 43, 100sylancr 590 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
102 absi 14638 . . . . . . . . . . . . . 14 (abs‘i) = 1
103102oveq1i 7145 . . . . . . . . . . . . 13 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
10444recnd 10658 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
105104mulid2d 10648 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
106103, 105syl5eq 2845 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘i) · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
107101, 106eqtr2d 2834 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
108107oveq2d 7151 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
10997, 99, 1083brtr4d 5062 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
110 iftrue 4431 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
111110adantl 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
11256adantl 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
113109, 111, 1123brtr4d 5062 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
114113ex 416 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
115 0le0 11726 . . . . . . . . 9 0 ≤ 0
116115a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
117 iffalse 4434 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
118116, 117, 623brtr4d 5062 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
119114, 118pm2.61d1 183 . . . . . 6 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
120119ralrimivw 3150 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
121 eqidd 2799 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
122 eqidd 2799 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
12331, 28, 92, 121, 122ofrfval2 7407 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
124120, 123mpbird 260 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
125 itg2le 24343 . . . 4 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
12629, 93, 124, 125syl3anc 1368 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
127 itg2lecl 24342 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
12829, 85, 126, 127syl3anc 1368 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
12920, 22iblpos 24396 . 2 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
13019, 128, 129mpbir2and 712 1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  r cofr 7388  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663  cle 10665  [,)cico 12728  [,]cicc 12729  cre 14448  cim 14449  abscabs 14585  cnccncf 23481  MblFncmbf 24218  2citg2 24220  𝐿1cibl 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-0p 24274
This theorem is referenced by:  iblmulc2  24434  itgabs  24438  bddmulibl  24442  itgcn  24448  ftc1a  24640  ftc1lem4  24642  itgulm  25003  fourierdlem47  42790  fourierdlem87  42830  etransclem23  42894
  Copyright terms: Public domain W3C validator