Proof of Theorem iblabs
Step | Hyp | Ref
| Expression |
1 | | absf 14977 |
. . . . 5
⊢
abs:ℂ⟶ℝ |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
3 | | iblabs.2 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
4 | | iblmbf 24837 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
6 | | iblabs.1 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
7 | 5, 6 | mbfmptcl 24705 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
8 | 2, 7 | cofmpt 6986 |
. . 3
⊢ (𝜑 → (abs ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) |
9 | 7 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
10 | | ax-resscn 10859 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
11 | | ssid 3939 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
12 | | cncfss 23968 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) |
13 | 10, 11, 12 | mp2an 688 |
. . . . . 6
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) |
14 | | abscncf 23970 |
. . . . . 6
⊢ abs
∈ (ℂ–cn→ℝ) |
15 | 13, 14 | sselii 3914 |
. . . . 5
⊢ abs
∈ (ℂ–cn→ℂ) |
16 | 15 | a1i 11 |
. . . 4
⊢ (𝜑 → abs ∈
(ℂ–cn→ℂ)) |
17 | | cncombf 24727 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ abs ∈
(ℂ–cn→ℂ)) →
(abs ∘ (𝑥 ∈
𝐴 ↦ 𝐵)) ∈ MblFn) |
18 | 5, 9, 16, 17 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (abs ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ MblFn) |
19 | 8, 18 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) |
20 | 7 | abscld 15076 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
21 | 20 | rexrd 10956 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈
ℝ*) |
22 | 7 | absge0d 15084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
23 | | elxrge0 13118 |
. . . . . . 7
⊢
((abs‘𝐵)
∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤
(abs‘𝐵))) |
24 | 21, 22, 23 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,]+∞)) |
25 | | 0e0iccpnf 13120 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
26 | 25 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
27 | 24, 26 | ifclda 4491 |
. . . . 5
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) |
28 | 27 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) |
29 | 28 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,]+∞)) |
30 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
32 | 7 | recld 14833 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
33 | 32 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
34 | 33 | abscld 15076 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
ℝ) |
35 | 33 | absge0d 15084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℜ‘𝐵))) |
36 | | elrege0 13115 |
. . . . . . . . . . 11
⊢
((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘𝐵)))) |
37 | 34, 35, 36 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
(0[,)+∞)) |
38 | | 0e0icopnf 13119 |
. . . . . . . . . . 11
⊢ 0 ∈
(0[,)+∞) |
39 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
40 | 37, 39 | ifclda 4491 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
41 | 40 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
42 | 7 | imcld 14834 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
43 | 42 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
44 | 43 | abscld 15076 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℝ) |
45 | 43 | absge0d 15084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℑ‘𝐵))) |
46 | | elrege0 13115 |
. . . . . . . . . . 11
⊢
((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘𝐵)))) |
47 | 44, 45, 46 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
(0[,)+∞)) |
48 | 47, 39 | ifclda 4491 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
49 | 48 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
50 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) |
51 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) |
52 | 31, 41, 49, 50, 51 | offval2 7531 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
53 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵))) |
54 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) =
(abs‘(ℑ‘𝐵))) |
55 | 53, 54 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) =
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
56 | | iftrue 4462 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
57 | 55, 56 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
58 | | 00id 11080 |
. . . . . . . . . 10
⊢ (0 + 0) =
0 |
59 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = 0) |
60 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) = 0) |
61 | 59, 60 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 +
0)) |
62 | | iffalse 4465 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
63 | 58, 61, 62 | 3eqtr4a 2805 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
64 | 57, 63 | pm2.61i 182 |
. . . . . . . 8
⊢ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) |
65 | 64 | mpteq2i 5175 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
66 | 52, 65 | eqtr2di 2796 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
67 | 66 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
68 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) |
69 | 7 | iblcn 24868 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
70 | 3, 69 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
71 | 70 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
72 | 6, 3, 68, 71, 32 | iblabslem 24897 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)) |
73 | 72 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn) |
74 | 41 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
75 | 72 | simprd 495 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ) |
76 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) |
77 | 70 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
78 | 6, 3, 76, 77, 42 | iblabslem 24897 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)) |
79 | 78 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈
MblFn) |
80 | 49 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
81 | 78 | simprd 495 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ) |
82 | 73, 74, 75, 79, 80, 81 | itg2add 24829 |
. . . . 5
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
83 | 67, 82 | eqtrd 2778 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
84 | 75, 81 | readdcld 10935 |
. . . 4
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈
ℝ) |
85 | 83, 84 | eqeltrd 2839 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈
ℝ) |
86 | 34, 44 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ ℝ) |
87 | 86 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈
ℝ*) |
88 | 34, 44, 35, 45 | addge0d 11481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
89 | | elxrge0 13118 |
. . . . . . . 8
⊢
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞) ↔
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ*
∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
90 | 87, 88, 89 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ (0[,]+∞)) |
91 | 90, 26 | ifclda 4491 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,]+∞)) |
92 | 91 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,]+∞)) |
93 | 92 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,]+∞)) |
94 | | ax-icn 10861 |
. . . . . . . . . . . 12
⊢ i ∈
ℂ |
95 | | mulcl 10886 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
96 | 94, 43, 95 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (i · (ℑ‘𝐵)) ∈
ℂ) |
97 | 33, 96 | abstrid 15096 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) ≤
((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
98 | 7 | replimd 14836 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) |
99 | 98 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵))))) |
100 | | absmul 14934 |
. . . . . . . . . . . . 13
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i
· (ℑ‘𝐵))) = ((abs‘i) ·
(abs‘(ℑ‘𝐵)))) |
101 | 94, 43, 100 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) =
((abs‘i) · (abs‘(ℑ‘𝐵)))) |
102 | | absi 14926 |
. . . . . . . . . . . . . 14
⊢
(abs‘i) = 1 |
103 | 102 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢
((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 ·
(abs‘(ℑ‘𝐵))) |
104 | 44 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℂ) |
105 | 104 | mulid2d 10924 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
106 | 103, 105 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘i) ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
107 | 101, 106 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i ·
(ℑ‘𝐵)))) |
108 | 107 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
109 | 97, 99, 108 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
110 | | iftrue 4462 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) |
111 | 110 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) |
112 | 56 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
113 | 109, 111,
112 | 3brtr4d 5102 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
114 | 113 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
115 | | 0le0 12004 |
. . . . . . . . 9
⊢ 0 ≤
0 |
116 | 115 | a1i 11 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
117 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = 0) |
118 | 116, 117,
62 | 3brtr4d 5102 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
119 | 114, 118 | pm2.61d1 180 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
120 | 119 | ralrimivw 3108 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
121 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) |
122 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
123 | 31, 28, 92, 121, 122 | ofrfval2 7532 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
124 | 120, 123 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
125 | | itg2le 24809 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) |
126 | 29, 93, 124, 125 | syl3anc 1369 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) |
127 | | itg2lecl 24808 |
. . 3
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
128 | 29, 85, 126, 127 | syl3anc 1369 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
129 | 20, 22 | iblpos 24862 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ))) |
130 | 19, 128, 129 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |