Proof of Theorem itgmulc2nclem2
Step | Hyp | Ref
| Expression |
1 | | itgmulc2nc.4 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
2 | | max0sub 12859 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ → (if(0
≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶) |
4 | 3 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = (𝐶 · 𝐵)) |
5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = (𝐶 · 𝐵)) |
6 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
7 | | ifcl 4501 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
8 | 1, 6, 7 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
9 | 8 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ) |
10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ) |
11 | 1 | renegcld 11332 |
. . . . . . . 8
⊢ (𝜑 → -𝐶 ∈ ℝ) |
12 | | ifcl 4501 |
. . . . . . . 8
⊢ ((-𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
13 | 11, 6, 12 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
14 | 13 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ) |
15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ) |
16 | | itgmulc2nc.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
17 | 16 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
18 | 10, 15, 17 | subdird 11362 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))) |
19 | 5, 18 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))) |
20 | 19 | itgeq2dv 24851 |
. 2
⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥) |
21 | | ovexd 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) ∈ V) |
22 | | itgmulc2nc.3 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
23 | | itgmulc2nc.m |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
24 | | ovexd 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ V) |
25 | 23, 24 | mbfdm2 24706 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
26 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
27 | | fconstmpt 5640 |
. . . . . . 7
⊢ (𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) |
28 | 27 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0))) |
29 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
30 | 25, 26, 16, 28, 29 | offval2 7531 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵))) |
31 | | iblmbf 24837 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
32 | 22, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
33 | 17 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
34 | 32, 8, 33 | mbfmulc2re 24717 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ MblFn) |
35 | 30, 34 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) ∈ MblFn) |
36 | 9, 16, 22, 35 | iblmulc2nc 35769 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) ∈
𝐿1) |
37 | | ovexd 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) ∈ V) |
38 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ) |
39 | | fconstmpt 5640 |
. . . . . . 7
⊢ (𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)) |
40 | 39 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0))) |
41 | 25, 38, 16, 40, 29 | offval2 7531 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))) |
42 | 32, 13, 33 | mbfmulc2re 24717 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ MblFn) |
43 | 41, 42 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) ∈ MblFn) |
44 | 14, 16, 22, 43 | iblmulc2nc 35769 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) ∈
𝐿1) |
45 | 19 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) = (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))) |
46 | 45, 23 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))) ∈ MblFn) |
47 | 21, 36, 37, 44, 46 | itgsubnc 35766 |
. 2
⊢ (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥)) |
48 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V) |
49 | | ifcl 4501 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
50 | 16, 6, 49 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
51 | 16 | iblre 24863 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1))) |
52 | 22, 51 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧
(𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1)) |
53 | 52 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈
𝐿1) |
54 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
55 | 25, 26, 50, 28, 54 | offval2 7531 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)))) |
56 | 16, 32 | mbfpos 24720 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
57 | 50 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ) |
58 | 57 | fmpttd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℂ) |
59 | 56, 8, 58 | mbfmulc2re 24717 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn) |
60 | 55, 59 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn) |
61 | 9, 50, 53, 60 | iblmulc2nc 35769 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈
𝐿1) |
62 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V) |
63 | 16 | renegcld 11332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
64 | | ifcl 4501 |
. . . . . . . 8
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
65 | 63, 6, 64 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
66 | 52 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈
𝐿1) |
67 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) |
68 | 25, 26, 65, 28, 67 | offval2 7531 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
69 | 16, 32 | mbfneg 24719 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ MblFn) |
70 | 63, 69 | mbfpos 24720 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) |
71 | 65 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ) |
72 | 71 | fmpttd 6971 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℂ) |
73 | 70, 8, 72 | mbfmulc2re 24717 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn) |
74 | 68, 73 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn) |
75 | 9, 65, 66, 74 | iblmulc2nc 35769 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈
𝐿1) |
76 | | max0sub 12859 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → (if(0
≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
77 | 16, 76 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵) |
78 | 77 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) |
79 | 10, 57, 71 | subdid 11361 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
80 | 78, 79 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
81 | 80 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) = (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))) |
82 | 30, 81 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))) |
83 | 82, 34 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) ∈ MblFn) |
84 | 48, 61, 62, 75, 83 | itgsubnc 35766 |
. . . . 5
⊢ (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
85 | 80 | itgeq2dv 24851 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥) |
86 | 16, 22 | itgreval 24866 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) |
87 | 86 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))) |
88 | 50, 53 | itgcl 24853 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ) |
89 | 65, 66 | itgcl 24853 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ) |
90 | 9, 88, 89 | subdid 11361 |
. . . . . 6
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))) |
91 | | max1 12848 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
92 | 6, 1, 91 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
93 | | max1 12848 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
94 | 6, 16, 93 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)) |
95 | 9, 50, 53, 60, 8, 50, 92, 94 | itgmulc2nclem1 35770 |
. . . . . . 7
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥) |
96 | | max1 12848 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
97 | 6, 63, 96 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
98 | 9, 65, 66, 74, 8, 65, 92, 97 | itgmulc2nclem1 35770 |
. . . . . . 7
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥) |
99 | 95, 98 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
100 | 87, 90, 99 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
101 | 84, 85, 100 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥)) |
102 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V) |
103 | 25, 38, 50, 40, 54 | offval2 7531 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)))) |
104 | 56, 13, 58 | mbfmulc2re 24717 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn) |
105 | 103, 104 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn) |
106 | 14, 50, 53, 105 | iblmulc2nc 35769 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈
𝐿1) |
107 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V) |
108 | 25, 38, 65, 40, 67 | offval2 7531 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) = (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
109 | 70, 13, 72 | mbfmulc2re 24717 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn) |
110 | 108, 109 | eqeltrrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn) |
111 | 14, 65, 66, 110 | iblmulc2nc 35769 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈
𝐿1) |
112 | 77 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) |
113 | 15, 57, 71 | subdid 11361 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
114 | 112, 113 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) |
115 | 114 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) = (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))) |
116 | 41, 115 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))) |
117 | 116, 42 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) ∈ MblFn) |
118 | 102, 106,
107, 111, 117 | itgsubnc 35766 |
. . . . 5
⊢ (𝜑 → ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
119 | 114 | itgeq2dv 24851 |
. . . . 5
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥) |
120 | 86 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))) |
121 | 14, 88, 89 | subdid 11361 |
. . . . . 6
⊢ (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))) |
122 | | max1 12848 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
123 | 6, 11, 122 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0)) |
124 | 14, 50, 53, 105, 13, 50, 123, 94 | itgmulc2nclem1 35770 |
. . . . . . 7
⊢ (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥) |
125 | 14, 65, 66, 110, 13, 65, 123, 97 | itgmulc2nclem1 35770 |
. . . . . . 7
⊢ (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥) |
126 | 124, 125 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
127 | 120, 121,
126 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)) |
128 | 118, 119,
127 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥)) |
129 | 101, 128 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥))) |
130 | 16, 22 | itgcl 24853 |
. . . 4
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
131 | 9, 14, 130 | subdird 11362 |
. . 3
⊢ (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥))) |
132 | 3 | oveq1d 7270 |
. . 3
⊢ (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥)) |
133 | 129, 131,
132 | 3eqtr2d 2784 |
. 2
⊢ (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥)) |
134 | 20, 47, 133 | 3eqtrrd 2783 |
1
⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |