MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblneg Structured version   Visualization version   GIF version

Theorem iblneg 25319
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25284 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25152 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65renegd 15155 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
76breq2d 5160 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
87, 6ifbieq1d 4552 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
98mpteq2dva 5248 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)))
105iblcn 25315 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
111, 10mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1211simpld 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
135recld 15140 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1413iblre 25310 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
1512, 14mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
1615simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
179, 16eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1)
186negeqd 11453 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
1913recnd 11241 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2019negnegd 11561 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
2118, 20eqtrd 2772 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
2221breq2d 5160 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
2322, 21ifbieq1d 4552 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
2423mpteq2dva 5248 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)))
2515simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2624, 25eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)
275negcld 11557 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
2827recld 15140 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
2928iblre 25310 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)))
3017, 26, 29mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
315imnegd 15156 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
3231breq2d 5160 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
3332, 31ifbieq1d 4552 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
3433mpteq2dva 5248 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)))
3511simprd 496 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
365imcld 15141 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3736iblre 25310 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
3835, 37mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
3938simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
4034, 39eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1)
4131negeqd 11453 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
4236recnd 11241 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342negnegd 11561 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
4441, 43eqtrd 2772 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
4544breq2d 5160 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
4645, 44ifbieq1d 4552 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
4746mpteq2dva 5248 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)))
4838simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
4947, 48eqeltrd 2833 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)
5027imcld 15141 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
5150iblre 25310 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)))
5240, 49, 51mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
5327iblcn 25315 . 2 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
5430, 52, 53mpbir2and 711 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ifcif 4528   class class class wbr 5148  cmpt 5231  cfv 6543  0cc0 11109  cle 11248  -cneg 11444  cre 15043  cim 15044  MblFncmbf 25130  𝐿1cibl 25133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xadd 13092  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-xmet 20936  df-met 20937  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-itg2 25137  df-ibl 25138  df-0p 25186
This theorem is referenced by:  itgneg  25320  iblsub  25338  itgsub  25342  iblsubnc  36544  itgsubnc  36545
  Copyright terms: Public domain W3C validator