MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblneg Structured version   Visualization version   GIF version

Theorem iblneg 24965
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24930 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24798 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65renegd 14918 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
76breq2d 5088 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
87, 6ifbieq1d 4485 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
98mpteq2dva 5176 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)))
105iblcn 24961 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
111, 10mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1211simpld 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
135recld 14903 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1413iblre 24956 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
1512, 14mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
1615simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
179, 16eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1)
186negeqd 11213 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
1913recnd 11001 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2019negnegd 11321 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
2118, 20eqtrd 2778 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
2221breq2d 5088 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
2322, 21ifbieq1d 4485 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
2423mpteq2dva 5176 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)))
2515simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2624, 25eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)
275negcld 11317 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
2827recld 14903 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
2928iblre 24956 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)))
3017, 26, 29mpbir2and 710 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
315imnegd 14919 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
3231breq2d 5088 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
3332, 31ifbieq1d 4485 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
3433mpteq2dva 5176 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)))
3511simprd 496 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
365imcld 14904 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3736iblre 24956 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
3835, 37mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
3938simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
4034, 39eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1)
4131negeqd 11213 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
4236recnd 11001 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342negnegd 11321 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
4441, 43eqtrd 2778 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
4544breq2d 5088 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
4645, 44ifbieq1d 4485 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
4746mpteq2dva 5176 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)))
4838simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
4947, 48eqeltrd 2839 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)
5027imcld 14904 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
5150iblre 24956 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)))
5240, 49, 51mpbir2and 710 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
5327iblcn 24961 . 2 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
5430, 52, 53mpbir2and 710 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ifcif 4461   class class class wbr 5076  cmpt 5159  cfv 6435  0cc0 10869  cle 11008  -cneg 11204  cre 14806  cim 14807  MblFncmbf 24776  𝐿1cibl 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-disj 5042  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-er 8496  df-map 8615  df-pm 8616  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-inf 9200  df-oi 9267  df-dju 9657  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12581  df-q 12687  df-rp 12729  df-xadd 12847  df-ioo 13081  df-ico 13083  df-icc 13084  df-fz 13238  df-fzo 13381  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-xmet 20588  df-met 20589  df-ovol 24626  df-vol 24627  df-mbf 24781  df-itg1 24782  df-itg2 24783  df-ibl 24784  df-0p 24832
This theorem is referenced by:  itgneg  24966  iblsub  24984  itgsub  24988  iblsubnc  35835  itgsubnc  35836
  Copyright terms: Public domain W3C validator