MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblneg Structured version   Visualization version   GIF version

Theorem iblneg 25839
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25803 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25672 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65renegd 15249 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
76breq2d 5154 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
87, 6ifbieq1d 4549 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
98mpteq2dva 5241 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)))
105iblcn 25835 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
111, 10mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1211simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
135recld 15234 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1413iblre 25830 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
1512, 14mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
1615simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
179, 16eqeltrd 2840 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1)
186negeqd 11503 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
1913recnd 11290 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2019negnegd 11612 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
2118, 20eqtrd 2776 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
2221breq2d 5154 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
2322, 21ifbieq1d 4549 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
2423mpteq2dva 5241 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)))
2515simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2624, 25eqeltrd 2840 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)
275negcld 11608 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
2827recld 15234 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
2928iblre 25830 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)))
3017, 26, 29mpbir2and 713 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
315imnegd 15250 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
3231breq2d 5154 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
3332, 31ifbieq1d 4549 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
3433mpteq2dva 5241 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)))
3511simprd 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
365imcld 15235 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3736iblre 25830 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
3835, 37mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
3938simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
4034, 39eqeltrd 2840 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1)
4131negeqd 11503 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
4236recnd 11290 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342negnegd 11612 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
4441, 43eqtrd 2776 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
4544breq2d 5154 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
4645, 44ifbieq1d 4549 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
4746mpteq2dva 5241 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)))
4838simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
4947, 48eqeltrd 2840 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)
5027imcld 15235 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
5150iblre 25830 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)))
5240, 49, 51mpbir2and 713 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
5327iblcn 25835 . 2 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
5430, 52, 53mpbir2and 713 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ifcif 4524   class class class wbr 5142  cmpt 5224  cfv 6560  0cc0 11156  cle 11297  -cneg 11494  cre 15137  cim 15138  MblFncmbf 25650  𝐿1cibl 25653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xadd 13156  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-xmet 21358  df-met 21359  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-ibl 25658  df-0p 25706
This theorem is referenced by:  itgneg  25840  iblsub  25858  itgsub  25862  iblsubnc  37689  itgsubnc  37690
  Copyright terms: Public domain W3C validator