MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblneg Structured version   Visualization version   GIF version

Theorem iblneg 25167
Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblneg (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25132 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25000 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65renegd 15094 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
76breq2d 5117 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
87, 6ifbieq1d 4510 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
98mpteq2dva 5205 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)))
105iblcn 25163 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
111, 10mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1211simpld 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
135recld 15079 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1413iblre 25158 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
1512, 14mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
1615simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
179, 16eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1)
186negeqd 11395 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
1913recnd 11183 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2019negnegd 11503 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
2118, 20eqtrd 2776 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
2221breq2d 5117 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
2322, 21ifbieq1d 4510 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
2423mpteq2dva 5205 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)))
2515simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2624, 25eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)
275negcld 11499 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
2827recld 15079 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
2928iblre 25158 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0)) ∈ 𝐿1)))
3017, 26, 29mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
315imnegd 15095 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
3231breq2d 5117 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
3332, 31ifbieq1d 4510 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
3433mpteq2dva 5205 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)))
3511simprd 496 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
365imcld 15080 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3736iblre 25158 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
3835, 37mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
3938simprd 496 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
4034, 39eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1)
4131negeqd 11395 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
4236recnd 11183 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342negnegd 11503 . . . . . . . 8 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
4441, 43eqtrd 2776 . . . . . . 7 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
4544breq2d 5117 . . . . . 6 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
4645, 44ifbieq1d 4510 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
4746mpteq2dva 5205 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) = (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)))
4838simpld 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
4947, 48eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)
5027imcld 15080 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
5150iblre 25158 . . 3 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0)) ∈ 𝐿1)))
5240, 49, 51mpbir2and 711 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
5327iblcn 25163 . 2 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
5430, 52, 53mpbir2and 711 1 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  0cc0 11051  cle 11190  -cneg 11386  cre 14982  cim 14983  MblFncmbf 24978  𝐿1cibl 24981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-0p 25034
This theorem is referenced by:  itgneg  25168  iblsub  25186  itgsub  25190  iblsubnc  36139  itgsubnc  36140
  Copyright terms: Public domain W3C validator