Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Visualization version   GIF version

Theorem itgaddnc 37284
Description: Choice-free analogue of itgadd 25798. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
Assertion
Ref Expression
itgaddnc (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25741 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25609 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 25741 . . . . . . . . 9 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 25609 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10readdd 15197 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
1211itgeq2dv 25755 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥)
135recld 15177 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
145iblcn 25772 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
151, 14mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1615simpld 493 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1710recld 15177 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
1810iblcn 25772 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)))
196, 18mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1))
2019simpld 493 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1)
215, 10addcld 11265 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
22 eqidd 2726 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
23 ref 15095 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
2423a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
2524feqmptd 6966 . . . . . . . . 9 (𝜑 → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
26 fveq2 6896 . . . . . . . . 9 (𝑦 = (𝐵 + 𝐶) → (ℜ‘𝑦) = (ℜ‘(𝐵 + 𝐶)))
2721, 22, 25, 26fmptco 7138 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))))
2811mpteq2dva 5249 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
2927, 28eqtrd 2765 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
30 ibladdnc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
3121fmpttd 7124 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
32 ismbfcn 25602 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3331, 32syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3430, 33mpbid 231 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn))
3534simpld 493 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
3629, 35eqeltrrd 2826 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))) ∈ MblFn)
3713, 16, 17, 20, 36, 13, 17itgaddnclem2 37283 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
3812, 37eqtrd 2765 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
395, 10imaddd 15198 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
4039itgeq2dv 25755 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥)
415imcld 15178 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4215simprd 494 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
4310imcld 15178 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
4419simprd 494 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)
45 imf 15096 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
4746feqmptd 6966 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
48 fveq2 6896 . . . . . . . . . . 11 (𝑦 = (𝐵 + 𝐶) → (ℑ‘𝑦) = (ℑ‘(𝐵 + 𝐶)))
4921, 22, 47, 48fmptco 7138 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))))
5039mpteq2dva 5249 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5149, 50eqtrd 2765 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5234simprd 494 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
5351, 52eqeltrrd 2826 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))) ∈ MblFn)
5441, 42, 43, 44, 53, 41, 43itgaddnclem2 37283 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5540, 54eqtrd 2765 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5655oveq2d 7435 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)))
57 ax-icn 11199 . . . . . . 7 i ∈ ℂ
5857a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5941, 42itgcl 25757 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
6043, 44itgcl 25757 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ)
6158, 59, 60adddid 11270 . . . . 5 (𝜑 → (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6256, 61eqtrd 2765 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6338, 62oveq12d 7437 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
6413, 16itgcl 25757 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
6517, 20itgcl 25757 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐶) d𝑥 ∈ ℂ)
66 mulcl 11224 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
6757, 59, 66sylancr 585 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
68 mulcl 11224 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
6957, 60, 68sylancr 585 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
7064, 65, 67, 69add4d 11474 . . 3 (𝜑 → ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7163, 70eqtrd 2765 . 2 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
72 ovexd 7454 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
734, 1, 9, 6, 30ibladdnc 37281 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
7472, 73itgcnval 25773 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)))
754, 1itgcnval 25773 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
769, 6itgcnval 25773 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
7775, 76oveq12d 7437 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7871, 74, 773eqtr4d 2775 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cmpt 5232  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  ici 11142   + caddc 11143   · cmul 11145  cre 15080  cim 15081  MblFncmbf 25587  𝐿1cibl 25590  citg 25591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cmp 23335  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593  df-itg2 25594  df-ibl 25595  df-itg 25596  df-0p 25643
This theorem is referenced by:  itgsubnc  37286  itgmulc2nc  37292  ftc1cnnclem  37295
  Copyright terms: Public domain W3C validator