Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Visualization version   GIF version

Theorem itgaddnc 33958
Description: Choice-free analogue of itgadd 23932. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
Assertion
Ref Expression
itgaddnc (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 23875 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23744 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 23875 . . . . . . . . 9 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 23744 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10readdd 14295 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
1211itgeq2dv 23889 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥)
135recld 14275 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
145iblcn 23906 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
151, 14mpbid 224 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1615simpld 489 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1710recld 14275 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
1810iblcn 23906 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)))
196, 18mpbid 224 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1))
2019simpld 489 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1)
215, 10addcld 10348 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
22 eqidd 2800 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
23 ref 14193 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
2423a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
2524feqmptd 6474 . . . . . . . . 9 (𝜑 → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
26 fveq2 6411 . . . . . . . . 9 (𝑦 = (𝐵 + 𝐶) → (ℜ‘𝑦) = (ℜ‘(𝐵 + 𝐶)))
2721, 22, 25, 26fmptco 6623 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))))
2811mpteq2dva 4937 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
2927, 28eqtrd 2833 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
30 ibladdnc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
3121fmpttd 6611 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
32 ismbfcn 23737 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3331, 32syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3430, 33mpbid 224 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn))
3534simpld 489 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
3629, 35eqeltrrd 2879 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))) ∈ MblFn)
3713, 16, 17, 20, 36, 13, 17itgaddnclem2 33957 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
3812, 37eqtrd 2833 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
395, 10imaddd 14296 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
4039itgeq2dv 23889 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥)
415imcld 14276 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4215simprd 490 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
4310imcld 14276 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
4419simprd 490 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)
45 imf 14194 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
4746feqmptd 6474 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
48 fveq2 6411 . . . . . . . . . . 11 (𝑦 = (𝐵 + 𝐶) → (ℑ‘𝑦) = (ℑ‘(𝐵 + 𝐶)))
4921, 22, 47, 48fmptco 6623 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))))
5039mpteq2dva 4937 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5149, 50eqtrd 2833 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5234simprd 490 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
5351, 52eqeltrrd 2879 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))) ∈ MblFn)
5441, 42, 43, 44, 53, 41, 43itgaddnclem2 33957 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5540, 54eqtrd 2833 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5655oveq2d 6894 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)))
57 ax-icn 10283 . . . . . . 7 i ∈ ℂ
5857a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5941, 42itgcl 23891 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
6043, 44itgcl 23891 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ)
6158, 59, 60adddid 10353 . . . . 5 (𝜑 → (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6256, 61eqtrd 2833 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6338, 62oveq12d 6896 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
6413, 16itgcl 23891 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
6517, 20itgcl 23891 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐶) d𝑥 ∈ ℂ)
66 mulcl 10308 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
6757, 59, 66sylancr 582 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
68 mulcl 10308 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
6957, 60, 68sylancr 582 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
7064, 65, 67, 69add4d 10554 . . 3 (𝜑 → ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7163, 70eqtrd 2833 . 2 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
72 ovexd 6912 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
734, 1, 9, 6, 30ibladdnc 33955 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
7472, 73itgcnval 23907 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)))
754, 1itgcnval 23907 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
769, 6itgcnval 23907 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
7775, 76oveq12d 6896 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7871, 74, 773eqtr4d 2843 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  cmpt 4922  ccom 5316  wf 6097  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  ici 10226   + caddc 10227   · cmul 10229  cre 14178  cim 14179  MblFncmbf 23722  𝐿1cibl 23725  citg 23726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-disj 4812  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-ofr 7132  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-sum 14758  df-rest 16398  df-topgen 16419  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-top 21027  df-topon 21044  df-bases 21079  df-cmp 21519  df-ovol 23572  df-vol 23573  df-mbf 23727  df-itg1 23728  df-itg2 23729  df-ibl 23730  df-itg 23731  df-0p 23778
This theorem is referenced by:  itgsubnc  33960  itgmulc2nc  33966  ftc1cnnclem  33971
  Copyright terms: Public domain W3C validator