Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsubnc Structured version   Visualization version   GIF version

Theorem iblsubnc 35580
Description: Choice-free analogue of iblsub 24724. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsubnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)
Assertion
Ref Expression
iblsubnc (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iblsubnc
StepHypRef Expression
1 ibladdnc.2 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24670 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24538 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 24670 . . . . . 6 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 24538 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10negsubd 11200 . . 3 ((𝜑𝑥𝐴) → (𝐵 + -𝐶) = (𝐵𝐶))
1211mpteq2dva 5155 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 + -𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
1310negcld 11181 . . 3 ((𝜑𝑥𝐴) → -𝐶 ∈ ℂ)
149, 6iblneg 24705 . . 3 (𝜑 → (𝑥𝐴 ↦ -𝐶) ∈ 𝐿1)
15 iblsubnc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ MblFn)
1612, 15eqeltrd 2838 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + -𝐶)) ∈ MblFn)
175, 1, 13, 14, 16ibladdnc 35576 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 + -𝐶)) ∈ 𝐿1)
1812, 17eqeltrrd 2839 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  cmpt 5140  (class class class)co 7218  cc 10732   + caddc 10737  cmin 11067  -cneg 11068  MblFncmbf 24516  𝐿1cibl 24519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-inf2 9261  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811  ax-pre-sup 10812  ax-addf 10813
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-se 5515  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-isom 6394  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-of 7474  df-ofr 7475  df-om 7650  df-1st 7766  df-2nd 7767  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-2o 8208  df-er 8396  df-map 8515  df-pm 8516  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-fi 9032  df-sup 9063  df-inf 9064  df-oi 9131  df-dju 9522  df-card 9560  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-div 11495  df-nn 11836  df-2 11898  df-3 11899  df-n0 12096  df-z 12182  df-uz 12444  df-q 12550  df-rp 12592  df-xneg 12709  df-xadd 12710  df-xmul 12711  df-ioo 12944  df-ico 12946  df-icc 12947  df-fz 13101  df-fzo 13244  df-fl 13372  df-seq 13580  df-exp 13641  df-hash 13902  df-cj 14667  df-re 14668  df-im 14669  df-sqrt 14803  df-abs 14804  df-clim 15054  df-sum 15255  df-rest 16932  df-topgen 16953  df-psmet 20360  df-xmet 20361  df-met 20362  df-bl 20363  df-mopn 20364  df-top 21796  df-topon 21813  df-bases 21848  df-cmp 22289  df-ovol 24366  df-vol 24367  df-mbf 24521  df-itg1 24522  df-itg2 24523  df-ibl 24524  df-0p 24572
This theorem is referenced by:  ftc1cnnclem  35590
  Copyright terms: Public domain W3C validator