| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgsub | Structured version Visualization version GIF version | ||
| Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgadd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| itgadd.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| itgadd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| itgadd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgsub | ⊢ (𝜑 → ∫𝐴(𝐵 − 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgadd.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 2 | iblmbf 25696 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 4 | itgadd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 5 | 3, 4 | mbfmptcl 25565 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 6 | itgadd.4 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
| 7 | iblmbf 25696 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 9 | itgadd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 10 | 8, 9 | mbfmptcl 25565 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 11 | 10 | negcld 11466 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℂ) |
| 12 | 9, 6 | iblneg 25732 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐶) ∈ 𝐿1) |
| 13 | 5, 1, 11, 12 | itgadd 25754 | . . 3 ⊢ (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴-𝐶 d𝑥)) |
| 14 | 9, 6 | itgneg 25733 | . . . 4 ⊢ (𝜑 → -∫𝐴𝐶 d𝑥 = ∫𝐴-𝐶 d𝑥) |
| 15 | 14 | oveq2d 7368 | . . 3 ⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥) = (∫𝐴𝐵 d𝑥 + ∫𝐴-𝐶 d𝑥)) |
| 16 | 13, 15 | eqtr4d 2771 | . 2 ⊢ (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥)) |
| 17 | 5, 10 | negsubd 11485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
| 18 | 17 | itgeq2dv 25711 | . 2 ⊢ (𝜑 → ∫𝐴(𝐵 + -𝐶) d𝑥 = ∫𝐴(𝐵 − 𝐶) d𝑥) |
| 19 | 4, 1 | itgcl 25713 | . . 3 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| 20 | 9, 6 | itgcl 25713 | . . 3 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ∈ ℂ) |
| 21 | 19, 20 | negsubd 11485 | . 2 ⊢ (𝜑 → (∫𝐴𝐵 d𝑥 + -∫𝐴𝐶 d𝑥) = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) |
| 22 | 16, 18, 21 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → ∫𝐴(𝐵 − 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 − ∫𝐴𝐶 d𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 (class class class)co 7352 ℂcc 11011 + caddc 11016 − cmin 11351 -cneg 11352 MblFncmbf 25543 𝐿1cibl 25546 ∫citg 25547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-rest 17328 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 df-ibl 25551 df-itg 25552 df-0p 25599 |
| This theorem is referenced by: itgmulc2lem2 25762 ftc1lem4 25974 itgulm 26345 areaquad 43333 itgsinexp 46077 |
| Copyright terms: Public domain | W3C validator |