MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgabs Structured version   Visualization version   GIF version

Theorem itgabs 24441
Description: The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgabs.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgabs.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgabs (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgabs.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 itgabs.2 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgcl 24390 . . . . . . . . . . 11 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
43cjcld 14550 . . . . . . . . . 10 (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5 iblmbf 24374 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
62, 5syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
76, 1mbfmptcl 24243 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 3152 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
9 nfv 1915 . . . . . . . . . . . . 13 𝑦 𝐵 ∈ ℂ
10 nfcsb1v 3855 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
1110nfel1 2974 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
12 csbeq1a 3845 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1312eleq1d 2877 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
149, 11, 13cbvralw 3390 . . . . . . . . . . . 12 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
158, 14sylib 221 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
1615r19.21bi 3176 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
17 nfcv 2958 . . . . . . . . . . . 12 𝑦𝐵
1817, 10, 12cbvmpt 5134 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
1918, 2eqeltrrid 2898 . . . . . . . . . 10 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐵) ∈ 𝐿1)
204, 16, 19iblmulc2 24437 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1)
214adantr 484 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
2221, 16mulcld 10654 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ ℂ)
2322iblcn 24405 . . . . . . . . 9 (𝜑 → ((𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1 ↔ ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)))
2420, 23mpbid 235 . . . . . . . 8 (𝜑 → ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1))
2524simpld 498 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
26 ovexd 7174 . . . . . . . 8 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V)
2726, 20iblabs 24435 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
2822recld 14548 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
2922abscld 14791 . . . . . . 7 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
3022releabsd 14806 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ≤ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)))
3125, 27, 28, 29, 30itgle 24416 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
323abscld 14791 . . . . . . . . 9 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
3332recnd 10662 . . . . . . . 8 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ)
3433sqvald 13507 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)))
353absvalsqd 14797 . . . . . . . . . 10 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)))
363, 4mulcomd 10655 . . . . . . . . . 10 (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥))
3712, 17, 10cbvitg 24382 . . . . . . . . . . . 12 𝐴𝐵 d𝑥 = ∫𝐴𝑦 / 𝑥𝐵 d𝑦
3837oveq2i 7150 . . . . . . . . . . 11 ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦)
394, 16, 19itgmulc2 24440 . . . . . . . . . . 11 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
4038, 39syl5eq 2848 . . . . . . . . . 10 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
4135, 36, 403eqtrd 2840 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
4241fveq2d 6653 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦))
4332resqcld 13611 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ)
4443rered 14578 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2))
4526, 20itgre 24407 . . . . . . . 8 (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
4642, 44, 453eqtr3d 2844 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
4734, 46eqtr3d 2838 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
4812fveq2d 6653 . . . . . . . . 9 (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘𝑦 / 𝑥𝐵))
49 nfcv 2958 . . . . . . . . 9 𝑦(abs‘𝐵)
50 nfcv 2958 . . . . . . . . . 10 𝑥abs
5150, 10nffv 6659 . . . . . . . . 9 𝑥(abs‘𝑦 / 𝑥𝐵)
5248, 49, 51cbvitg 24382 . . . . . . . 8 𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦
5352oveq2i 7150 . . . . . . 7 ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦)
5416abscld 14791 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘𝑦 / 𝑥𝐵) ∈ ℝ)
5516, 19iblabs 24435 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)) ∈ 𝐿1)
5633, 54, 55itgmulc2 24440 . . . . . . . 8 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
5721, 16absmuld 14809 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)))
583adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ)
5958abscjd 14805 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥))
6059oveq1d 7154 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
6157, 60eqtrd 2836 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
6261itgeq2dv 24388 . . . . . . . 8 (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
6356, 62eqtr4d 2839 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
6453, 63syl5eq 2848 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
6531, 47, 643brtr4d 5065 . . . . 5 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
6665adantr 484 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
6732adantr 484 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
687abscld 14791 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
691, 2iblabs 24435 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
7068, 69itgrecl 24404 . . . . . 6 (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
7170adantr 484 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
72 simpr 488 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥))
73 lemul2 11486 . . . . 5 (((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 < (abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
7467, 71, 67, 72, 73syl112anc 1371 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
7566, 74mpbird 260 . . 3 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
7675ex 416 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
777absge0d 14799 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
7869, 68, 77itgge0 24417 . . 3 (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥)
79 breq1 5036 . . 3 (0 = (abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
8078, 79syl5ibcom 248 . 2 (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
813absge0d 14799 . . 3 (𝜑 → 0 ≤ (abs‘∫𝐴𝐵 d𝑥))
82 0re 10636 . . . 4 0 ∈ ℝ
83 leloe 10720 . . . 4 ((0 ∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
8482, 32, 83sylancr 590 . . 3 (𝜑 → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
8581, 84mpbid 235 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))
8676, 80, 85mpjaod 857 1 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  csb 3831   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530   · cmul 10535   < clt 10668  cle 10669  2c2 11684  cexp 13429  ccj 14450  cre 14451  cim 14452  abscabs 14588  MblFncmbf 24221  𝐿1cibl 24224  citg 24225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-cnfld 20095  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227  df-itg2 24228  df-ibl 24229  df-itg 24230  df-0p 24277
This theorem is referenced by:  ftc1a  24643  ftc1lem4  24645  itgulm  25006  fourierdlem47  42782  fourierdlem87  42822  etransclem23  42886
  Copyright terms: Public domain W3C validator