| Step | Hyp | Ref
| Expression |
| 1 | | itgabs.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 2 | | itgabs.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 3 | 1, 2 | itgcl 25685 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| 4 | 3 | cjcld 15162 |
. . . . . . . . . 10
⊢ (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
| 5 | | iblmbf 25668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 6 | 2, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 7 | 6, 1 | mbfmptcl 25537 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 8 | 7 | ralrimiva 3125 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
| 9 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝐵 ∈ ℂ |
| 10 | | nfcsb1v 3886 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 11 | 10 | nfel1 2908 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ |
| 12 | | csbeq1a 3876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 13 | 12 | eleq1d 2813 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ)) |
| 14 | 9, 11, 13 | cbvralw 3280 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
| 15 | 8, 14 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
| 16 | 15 | r19.21bi 3229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
| 17 | | nfcv 2891 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐵 |
| 18 | 17, 10, 12 | cbvmpt 5209 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 19 | 18, 2 | eqeltrrid 2833 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) ∈
𝐿1) |
| 20 | 4, 16, 19 | iblmulc2 25732 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
| 21 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
| 22 | 21, 16 | mulcld 11194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ ℂ) |
| 23 | 22 | iblcn 25700 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ 𝐿1 ↔
((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1))) |
| 24 | 20, 23 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1)) |
| 25 | 24 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
| 26 | | ovexd 7422 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ V) |
| 27 | 26, 20 | iblabs 25730 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
| 28 | 22 | recld 15160 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
| 29 | 22 | abscld 15405 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
| 30 | 22 | releabsd 15420 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ≤
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) |
| 31 | 25, 27, 28, 29, 30 | itgle 25711 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 32 | 3 | abscld 15405 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
| 33 | 32 | recnd 11202 |
. . . . . . . 8
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
| 34 | 33 | sqvald 14108 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥))) |
| 35 | 3 | absvalsqd 15411 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥))) |
| 36 | 3, 4 | mulcomd 11195 |
. . . . . . . . . 10
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥)) |
| 37 | 12, 17, 10 | cbvitg 25677 |
. . . . . . . . . . . 12
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦 |
| 38 | 37 | oveq2i 7398 |
. . . . . . . . . . 11
⊢
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) |
| 39 | 4, 16, 19 | itgmulc2 25735 |
. . . . . . . . . . 11
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
| 40 | 38, 39 | eqtrid 2776 |
. . . . . . . . . 10
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
| 41 | 35, 36, 40 | 3eqtrd 2768 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
| 42 | 41 | fveq2d 6862 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦)) |
| 43 | 32 | resqcld 14090 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ) |
| 44 | 43 | rered 15190 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2)) |
| 45 | 26, 20 | itgre 25702 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 46 | 42, 44, 45 | 3eqtr3d 2772 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 47 | 34, 46 | eqtr3d 2766 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 48 | 12 | fveq2d 6862 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘⦋𝑦 / 𝑥⦌𝐵)) |
| 49 | | nfcv 2891 |
. . . . . . . . 9
⊢
Ⅎ𝑦(abs‘𝐵) |
| 50 | | nfcv 2891 |
. . . . . . . . . 10
⊢
Ⅎ𝑥abs |
| 51 | 50, 10 | nffv 6868 |
. . . . . . . . 9
⊢
Ⅎ𝑥(abs‘⦋𝑦 / 𝑥⦌𝐵) |
| 52 | 48, 49, 51 | cbvitg 25677 |
. . . . . . . 8
⊢
∫𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦 |
| 53 | 52 | oveq2i 7398 |
. . . . . . 7
⊢
((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
| 54 | 16 | abscld 15405 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (abs‘⦋𝑦 / 𝑥⦌𝐵) ∈ ℝ) |
| 55 | 16, 19 | iblabs 25730 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
| 56 | 33, 54, 55 | itgmulc2 25735 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 57 | 21, 16 | absmuld 15423 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
| 58 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| 59 | 58 | abscjd 15419 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥)) |
| 60 | 59 | oveq1d 7402 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
| 61 | 57, 60 | eqtrd 2764 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
| 62 | 61 | itgeq2dv 25683 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 63 | 56, 62 | eqtr4d 2767 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 64 | 53, 63 | eqtrid 2776 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
| 65 | 31, 47, 64 | 3brtr4d 5139 |
. . . . 5
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
| 66 | 65 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
| 67 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
| 68 | 7 | abscld 15405 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
| 69 | 1, 2 | iblabs 25730 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
| 70 | 68, 69 | itgrecl 25699 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
| 71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
| 72 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥)) |
| 73 | | lemul2 12035 |
. . . . 5
⊢
(((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
| 74 | 67, 71, 67, 72, 73 | syl112anc 1376 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
| 75 | 66, 74 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |
| 76 | 75 | ex 412 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
| 77 | 7 | absge0d 15413 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
| 78 | 69, 68, 77 | itgge0 25712 |
. . 3
⊢ (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥) |
| 79 | | breq1 5110 |
. . 3
⊢ (0 =
(abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
| 80 | 78, 79 | syl5ibcom 245 |
. 2
⊢ (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
| 81 | 3 | absge0d 15413 |
. . 3
⊢ (𝜑 → 0 ≤
(abs‘∫𝐴𝐵 d𝑥)) |
| 82 | | 0re 11176 |
. . . 4
⊢ 0 ∈
ℝ |
| 83 | | leloe 11260 |
. . . 4
⊢ ((0
∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
| 84 | 82, 32, 83 | sylancr 587 |
. . 3
⊢ (𝜑 → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
| 85 | 81, 84 | mpbid 232 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))) |
| 86 | 76, 80, 85 | mpjaod 860 |
1
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |