Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnc Structured version   Visualization version   GIF version

Theorem iblabsnc 35768
Description: Choice-free analogue of iblabs 24898. As with ibladdnc 35761, a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnc.m (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
Assertion
Ref Expression
iblabsnc (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnc
StepHypRef Expression
1 iblabsnc.m . 2 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
2 iblabsnc.2 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
3 iblmbf 24837 . . . . . . . . . . 11 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
42, 3syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
5 iblabsnc.1 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵𝑉)
64, 5mbfmptcl 24705 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
76abscld 15076 . . . . . . . 8 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
87rexrd 10956 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
96absge0d 15084 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
10 elxrge0 13118 . . . . . . 7 ((abs‘𝐵) ∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤ (abs‘𝐵)))
118, 9, 10sylanbrc 582 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
12 0e0iccpnf 13120 . . . . . . 7 0 ∈ (0[,]+∞)
1312a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
1411, 13ifclda 4491 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
1514adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
1615fmpttd 6971 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
17 reex 10893 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
196recld 14833 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
2019recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
2120abscld 15076 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
2220absge0d 15084 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
23 elrege0 13115 . . . . . . . . . . 11 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
2421, 22, 23sylanbrc 582 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
25 0e0icopnf 13119 . . . . . . . . . . 11 0 ∈ (0[,)+∞)
2625a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2724, 26ifclda 4491 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
2827adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
296imcld 14834 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3029recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
3130abscld 15076 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
3230absge0d 15084 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
33 elrege0 13115 . . . . . . . . . . 11 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
3431, 32, 33sylanbrc 582 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
3534, 26ifclda 4491 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
3635adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
37 eqidd 2739 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
38 eqidd 2739 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
3918, 28, 36, 37, 38offval2 7531 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
40 iftrue 4462 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
41 iftrue 4462 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
4240, 41oveq12d 7273 . . . . . . . . . 10 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
43 iftrue 4462 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
4442, 43eqtr4d 2781 . . . . . . . . 9 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
45 00id 11080 . . . . . . . . . 10 (0 + 0) = 0
46 iffalse 4465 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
47 iffalse 4465 . . . . . . . . . . 11 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
4846, 47oveq12d 7273 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
49 iffalse 4465 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
5045, 48, 493eqtr4a 2805 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
5144, 50pm2.61i 182 . . . . . . . 8 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
5251mpteq2i 5175 . . . . . . 7 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
5339, 52eqtr2di 2796 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
5453fveq2d 6760 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
55 eqid 2738 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
566iblcn 24868 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
572, 56mpbid 231 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
5857simpld 494 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
595, 2, 55, 58, 19iblabsnclem 35767 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
6059simpld 494 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
6128fmpttd 6971 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
6259simprd 495 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
6336fmpttd 6971 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
64 eqid 2738 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
6557simprd 495 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
665, 2, 64, 65, 29iblabsnclem 35767 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
6766simprd 495 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
6860, 61, 62, 63, 67itg2addnc 35758 . . . . 5 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
6954, 68eqtrd 2778 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
7062, 67readdcld 10935 . . . 4 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
7169, 70eqeltrd 2839 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
7221, 31readdcld 10935 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
7372rexrd 10956 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ*)
7421, 31, 22, 32addge0d 11481 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
75 elxrge0 13118 . . . . . . . 8 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ* ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
7673, 74, 75sylanbrc 582 . . . . . . 7 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞))
7776, 13ifclda 4491 . . . . . 6 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
7877adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,]+∞))
7978fmpttd 6971 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞))
80 ax-icn 10861 . . . . . . . . . . 11 i ∈ ℂ
81 mulcl 10886 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
8280, 30, 81sylancr 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
8320, 82abstrid 15096 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
84 iftrue 4462 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
8584adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
866replimd 14836 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
8786fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
8885, 87eqtrd 2778 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
8943adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
90 absmul 14934 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
9180, 30, 90sylancr 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
92 absi 14926 . . . . . . . . . . . . . 14 (abs‘i) = 1
9392oveq1i 7265 . . . . . . . . . . . . 13 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
9431recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
9594mulid2d 10924 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
9693, 95syl5eq 2791 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘i) · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
9791, 96eqtr2d 2779 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
9897oveq2d 7271 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
9989, 98eqtrd 2778 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
10083, 88, 993brtr4d 5102 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
101100ex 412 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
102 0le0 12004 . . . . . . . . 9 0 ≤ 0
103102a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
104 iffalse 4465 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
105103, 104, 493brtr4d 5102 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
106101, 105pm2.61d1 180 . . . . . 6 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
107106ralrimivw 3108 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
108 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
109 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
11018, 15, 78, 108, 109ofrfval2 7532 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, (abs‘𝐵), 0) ≤ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
111107, 110mpbird 256 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
112 itg2le 24809 . . . 4 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
11316, 79, 111, 112syl3anc 1369 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
114 itg2lecl 24808 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
11516, 71, 113, 114syl3anc 1369 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
1167, 9iblpos 24862 . 2 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
1171, 115, 116mpbir2and 709 1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941  [,)cico 13010  [,]cicc 13011  cre 14736  cim 14737  abscabs 14873  MblFncmbf 24683  2citg2 24685  𝐿1cibl 24686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-0p 24739
This theorem is referenced by:  itgabsnc  35773  ftc1cnnclem  35775  ftc1anclem2  35778  ftc1anclem4  35780  ftc1anclem5  35781  ftc2nc  35786
  Copyright terms: Public domain W3C validator