Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnc Structured version   Visualization version   GIF version

Theorem iblabsnc 36028
Description: Choice-free analogue of iblabs 25115. As with ibladdnc 36021, a measurability hypothesis is needed. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
iblabsnc.2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1)
iblabsnc.m (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ MblFn)
Assertion
Ref Expression
iblabsnc (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ ๐ฟ1)
Distinct variable groups:   ๐‘ฅ,๐ด   ๐œ‘,๐‘ฅ
Allowed substitution hints:   ๐ต(๐‘ฅ)   ๐‘‰(๐‘ฅ)

Proof of Theorem iblabsnc
StepHypRef Expression
1 iblabsnc.m . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ MblFn)
2 iblabsnc.2 . . . . . . . . . . 11 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1)
3 iblmbf 25054 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1 โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ MblFn)
42, 3syl 17 . . . . . . . . . 10 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ MblFn)
5 iblabsnc.1 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
64, 5mbfmptcl 24922 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„‚)
76abscld 15256 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜๐ต) โˆˆ โ„)
87rexrd 11139 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜๐ต) โˆˆ โ„*)
96absge0d 15264 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค (absโ€˜๐ต))
10 elxrge0 13303 . . . . . . 7 ((absโ€˜๐ต) โˆˆ (0[,]+โˆž) โ†” ((absโ€˜๐ต) โˆˆ โ„* โˆง 0 โ‰ค (absโ€˜๐ต)))
118, 9, 10sylanbrc 584 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜๐ต) โˆˆ (0[,]+โˆž))
12 0e0iccpnf 13305 . . . . . . 7 0 โˆˆ (0[,]+โˆž)
1312a1i 11 . . . . . 6 ((๐œ‘ โˆง ยฌ ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โˆˆ (0[,]+โˆž))
1411, 13ifclda 4520 . . . . 5 (๐œ‘ โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โˆˆ (0[,]+โˆž))
1514adantr 482 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โˆˆ (0[,]+โˆž))
1615fmpttd 7058 . . 3 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)):โ„โŸถ(0[,]+โˆž))
17 reex 11076 . . . . . . . . 9 โ„ โˆˆ V
1817a1i 11 . . . . . . . 8 (๐œ‘ โ†’ โ„ โˆˆ V)
196recld 15013 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
2019recnd 11117 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„œโ€˜๐ต) โˆˆ โ„‚)
2120abscld 15256 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„œโ€˜๐ต)) โˆˆ โ„)
2220absge0d 15264 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค (absโ€˜(โ„œโ€˜๐ต)))
23 elrege0 13300 . . . . . . . . . . 11 ((absโ€˜(โ„œโ€˜๐ต)) โˆˆ (0[,)+โˆž) โ†” ((absโ€˜(โ„œโ€˜๐ต)) โˆˆ โ„ โˆง 0 โ‰ค (absโ€˜(โ„œโ€˜๐ต))))
2421, 22, 23sylanbrc 584 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„œโ€˜๐ต)) โˆˆ (0[,)+โˆž))
25 0e0icopnf 13304 . . . . . . . . . . 11 0 โˆˆ (0[,)+โˆž)
2625a1i 11 . . . . . . . . . 10 ((๐œ‘ โˆง ยฌ ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โˆˆ (0[,)+โˆž))
2724, 26ifclda 4520 . . . . . . . . 9 (๐œ‘ โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) โˆˆ (0[,)+โˆž))
2827adantr 482 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) โˆˆ (0[,)+โˆž))
296imcld 15014 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
3029recnd 11117 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„‚)
3130abscld 15256 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„‘โ€˜๐ต)) โˆˆ โ„)
3230absge0d 15264 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค (absโ€˜(โ„‘โ€˜๐ต)))
33 elrege0 13300 . . . . . . . . . . 11 ((absโ€˜(โ„‘โ€˜๐ต)) โˆˆ (0[,)+โˆž) โ†” ((absโ€˜(โ„‘โ€˜๐ต)) โˆˆ โ„ โˆง 0 โ‰ค (absโ€˜(โ„‘โ€˜๐ต))))
3431, 32, 33sylanbrc 584 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„‘โ€˜๐ต)) โˆˆ (0[,)+โˆž))
3534, 26ifclda 4520 . . . . . . . . 9 (๐œ‘ โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0) โˆˆ (0[,)+โˆž))
3635adantr 482 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0) โˆˆ (0[,)+โˆž))
37 eqidd 2739 . . . . . . . 8 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)))
38 eqidd 2739 . . . . . . . 8 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))
3918, 28, 36, 37, 38offval2 7628 . . . . . . 7 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆ˜f + (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))) = (๐‘ฅ โˆˆ โ„ โ†ฆ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))))
40 iftrue 4491 . . . . . . . . . . 11 (๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) = (absโ€˜(โ„œโ€˜๐ต)))
41 iftrue 4491 . . . . . . . . . . 11 (๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0) = (absโ€˜(โ„‘โ€˜๐ต)))
4240, 41oveq12d 7368 . . . . . . . . . 10 (๐‘ฅ โˆˆ ๐ด โ†’ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))))
43 iftrue 4491 . . . . . . . . . 10 (๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) = ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))))
4442, 43eqtr4d 2781 . . . . . . . . 9 (๐‘ฅ โˆˆ ๐ด โ†’ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
45 00id 11264 . . . . . . . . . 10 (0 + 0) = 0
46 iffalse 4494 . . . . . . . . . . 11 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) = 0)
47 iffalse 4494 . . . . . . . . . . 11 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0) = 0)
4846, 47oveq12d 7368 . . . . . . . . . 10 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = (0 + 0))
49 iffalse 4494 . . . . . . . . . 10 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) = 0)
5045, 48, 493eqtr4a 2804 . . . . . . . . 9 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
5144, 50pm2.61i 182 . . . . . . . 8 (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)
5251mpteq2i 5209 . . . . . . 7 (๐‘ฅ โˆˆ โ„ โ†ฆ (if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0) + if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
5339, 52eqtr2di 2795 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆ˜f + (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))))
5453fveq2d 6842 . . . . 5 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))) = (โˆซ2โ€˜((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆ˜f + (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))))
55 eqid 2738 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))
566iblcn 25085 . . . . . . . . . 10 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1 โ†” ((๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„œโ€˜๐ต)) โˆˆ ๐ฟ1 โˆง (๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„‘โ€˜๐ต)) โˆˆ ๐ฟ1)))
572, 56mpbid 231 . . . . . . . . 9 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„œโ€˜๐ต)) โˆˆ ๐ฟ1 โˆง (๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„‘โ€˜๐ต)) โˆˆ ๐ฟ1))
5857simpld 496 . . . . . . . 8 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„œโ€˜๐ต)) โˆˆ ๐ฟ1)
595, 2, 55, 58, 19iblabsnclem 36027 . . . . . . 7 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆˆ MblFn โˆง (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))) โˆˆ โ„))
6059simpld 496 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆˆ MblFn)
6128fmpttd 7058 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)):โ„โŸถ(0[,)+โˆž))
6259simprd 497 . . . . . 6 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))) โˆˆ โ„)
6336fmpttd 7058 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)):โ„โŸถ(0[,)+โˆž))
64 eqid 2738 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))
6557simprd 497 . . . . . . . 8 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (โ„‘โ€˜๐ต)) โˆˆ ๐ฟ1)
665, 2, 64, 65, 29iblabsnclem 36027 . . . . . . 7 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)) โˆˆ MblFn โˆง (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))) โˆˆ โ„))
6766simprd 497 . . . . . 6 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0))) โˆˆ โ„)
6860, 61, 62, 63, 67itg2addnc 36018 . . . . 5 (๐œ‘ โ†’ (โˆซ2โ€˜((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0)) โˆ˜f + (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))) = ((โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))) + (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))))
6954, 68eqtrd 2778 . . . 4 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))) = ((โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))) + (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))))
7062, 67readdcld 11118 . . . 4 (๐œ‘ โ†’ ((โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„œโ€˜๐ต)), 0))) + (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜(โ„‘โ€˜๐ต)), 0)))) โˆˆ โ„)
7169, 70eqeltrd 2839 . . 3 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))) โˆˆ โ„)
7221, 31readdcld 11118 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) โˆˆ โ„)
7372rexrd 11139 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) โˆˆ โ„*)
7421, 31, 22, 32addge0d 11665 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ 0 โ‰ค ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))))
75 elxrge0 13303 . . . . . . . 8 (((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) โˆˆ (0[,]+โˆž) โ†” (((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) โˆˆ โ„* โˆง 0 โ‰ค ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต)))))
7673, 74, 75sylanbrc 584 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) โˆˆ (0[,]+โˆž))
7776, 13ifclda 4520 . . . . . 6 (๐œ‘ โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) โˆˆ (0[,]+โˆž))
7877adantr 482 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) โˆˆ (0[,]+โˆž))
7978fmpttd 7058 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)):โ„โŸถ(0[,]+โˆž))
80 ax-icn 11044 . . . . . . . . . . 11 i โˆˆ โ„‚
81 mulcl 11069 . . . . . . . . . . 11 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
8280, 30, 81sylancr 588 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (i ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
8320, 82abstrid 15276 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))) โ‰ค ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(i ยท (โ„‘โ€˜๐ต)))))
84 iftrue 4491 . . . . . . . . . . 11 (๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) = (absโ€˜๐ต))
8584adantl 483 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) = (absโ€˜๐ต))
866replimd 15016 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต = ((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต))))
8786fveq2d 6842 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜๐ต) = (absโ€˜((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))))
8885, 87eqtrd 2778 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) = (absโ€˜((โ„œโ€˜๐ต) + (i ยท (โ„‘โ€˜๐ต)))))
8943adantl 483 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) = ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))))
90 absmul 15114 . . . . . . . . . . . . 13 ((i โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ (absโ€˜(i ยท (โ„‘โ€˜๐ต))) = ((absโ€˜i) ยท (absโ€˜(โ„‘โ€˜๐ต))))
9180, 30, 90sylancr 588 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(i ยท (โ„‘โ€˜๐ต))) = ((absโ€˜i) ยท (absโ€˜(โ„‘โ€˜๐ต))))
92 absi 15106 . . . . . . . . . . . . . 14 (absโ€˜i) = 1
9392oveq1i 7360 . . . . . . . . . . . . 13 ((absโ€˜i) ยท (absโ€˜(โ„‘โ€˜๐ต))) = (1 ยท (absโ€˜(โ„‘โ€˜๐ต)))
9431recnd 11117 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„‘โ€˜๐ต)) โˆˆ โ„‚)
9594mulid2d 11107 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (1 ยท (absโ€˜(โ„‘โ€˜๐ต))) = (absโ€˜(โ„‘โ€˜๐ต)))
9693, 95eqtrid 2790 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ((absโ€˜i) ยท (absโ€˜(โ„‘โ€˜๐ต))) = (absโ€˜(โ„‘โ€˜๐ต)))
9791, 96eqtr2d 2779 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (absโ€˜(โ„‘โ€˜๐ต)) = (absโ€˜(i ยท (โ„‘โ€˜๐ต))))
9897oveq2d 7366 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))) = ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(i ยท (โ„‘โ€˜๐ต)))))
9989, 98eqtrd 2778 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0) = ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(i ยท (โ„‘โ€˜๐ต)))))
10083, 88, 993brtr4d 5136 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
101100ex 414 . . . . . . 7 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)))
102 0le0 12188 . . . . . . . . 9 0 โ‰ค 0
103102a1i 11 . . . . . . . 8 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ 0 โ‰ค 0)
104 iffalse 4494 . . . . . . . 8 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) = 0)
105103, 104, 493brtr4d 5136 . . . . . . 7 (ยฌ ๐‘ฅ โˆˆ ๐ด โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
106101, 105pm2.61d1 180 . . . . . 6 (๐œ‘ โ†’ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
107106ralrimivw 3146 . . . . 5 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ โ„ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))
108 eqidd 2739 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)))
109 eqidd 2739 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)))
11018, 15, 78, 108, 109ofrfval2 7629 . . . . 5 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)) โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)) โ†” โˆ€๐‘ฅ โˆˆ โ„ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0) โ‰ค if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)))
111107, 110mpbird 257 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)) โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)))
112 itg2le 25026 . . . 4 (((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)):โ„โŸถ(0[,]+โˆž) โˆง (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)):โ„โŸถ(0[,]+โˆž) โˆง (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)) โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โ‰ค (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))))
11316, 79, 111, 112syl3anc 1372 . . 3 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โ‰ค (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))))
114 itg2lecl 25025 . . 3 (((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0)):โ„โŸถ(0[,]+โˆž) โˆง (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0))) โˆˆ โ„ โˆง (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โ‰ค (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ((absโ€˜(โ„œโ€˜๐ต)) + (absโ€˜(โ„‘โ€˜๐ต))), 0)))) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โˆˆ โ„)
11516, 71, 113, 114syl3anc 1372 . 2 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โˆˆ โ„)
1167, 9iblpos 25079 . 2 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ ๐ฟ1 โ†” ((๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ MblFn โˆง (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, (absโ€˜๐ต), 0))) โˆˆ โ„)))
1171, 115, 116mpbir2and 712 1 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ (absโ€˜๐ต)) โˆˆ ๐ฟ1)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  โˆ€wral 3063  Vcvv 3444  ifcif 4485   class class class wbr 5104   โ†ฆ cmpt 5187  โŸถwf 6488  โ€˜cfv 6492  (class class class)co 7350   โˆ˜f cof 7606   โˆ˜r cofr 7607  โ„‚cc 10983  โ„cr 10984  0cc0 10985  1c1 10986  ici 10987   + caddc 10988   ยท cmul 10990  +โˆžcpnf 11120  โ„*cxr 11122   โ‰ค cle 11124  [,)cico 13195  [,]cicc 13196  โ„œcre 14916  โ„‘cim 14917  abscabs 15053  MblFncmbf 24900  โˆซ2citg2 24902  ๐ฟ1cibl 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-disj 5070  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-ofr 7609  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-map 8701  df-pm 8702  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-dju 9771  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-n0 12348  df-z 12434  df-uz 12697  df-q 12803  df-rp 12845  df-xneg 12962  df-xadd 12963  df-xmul 12964  df-ioo 13197  df-ico 13199  df-icc 13200  df-fz 13354  df-fzo 13497  df-fl 13626  df-seq 13836  df-exp 13897  df-hash 14159  df-cj 14918  df-re 14919  df-im 14920  df-sqrt 15054  df-abs 15055  df-clim 15305  df-sum 15506  df-rest 17239  df-topgen 17260  df-psmet 20711  df-xmet 20712  df-met 20713  df-bl 20714  df-mopn 20715  df-top 22165  df-topon 22182  df-bases 22218  df-cmp 22660  df-ovol 24750  df-vol 24751  df-mbf 24905  df-itg1 24906  df-itg2 24907  df-ibl 24908  df-0p 24956
This theorem is referenced by:  itgabsnc  36033  ftc1cnnclem  36035  ftc1anclem2  36038  ftc1anclem4  36040  ftc1anclem5  36041  ftc2nc  36046
  Copyright terms: Public domain W3C validator