Proof of Theorem iblabsnc
| Step | Hyp | Ref
| Expression |
| 1 | | iblabsnc.m |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) |
| 2 | | iblabsnc.2 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 3 | | iblmbf 25802 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 5 | | iblabsnc.1 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 6 | 4, 5 | mbfmptcl 25671 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 7 | 6 | abscld 15475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
| 8 | 7 | rexrd 11311 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈
ℝ*) |
| 9 | 6 | absge0d 15483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
| 10 | | elxrge0 13497 |
. . . . . . 7
⊢
((abs‘𝐵)
∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤
(abs‘𝐵))) |
| 11 | 8, 9, 10 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,]+∞)) |
| 12 | | 0e0iccpnf 13499 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 14 | 11, 13 | ifclda 4561 |
. . . . 5
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) |
| 16 | 15 | fmpttd 7135 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,]+∞)) |
| 17 | | reex 11246 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
| 19 | 6 | recld 15233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 20 | 19 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 21 | 20 | abscld 15475 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
ℝ) |
| 22 | 20 | absge0d 15483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℜ‘𝐵))) |
| 23 | | elrege0 13494 |
. . . . . . . . . . 11
⊢
((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘𝐵)))) |
| 24 | 21, 22, 23 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
(0[,)+∞)) |
| 25 | | 0e0icopnf 13498 |
. . . . . . . . . . 11
⊢ 0 ∈
(0[,)+∞) |
| 26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
| 27 | 24, 26 | ifclda 4561 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 29 | 6 | imcld 15234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 30 | 29 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 31 | 30 | abscld 15475 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℝ) |
| 32 | 30 | absge0d 15483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℑ‘𝐵))) |
| 33 | | elrege0 13494 |
. . . . . . . . . . 11
⊢
((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘𝐵)))) |
| 34 | 31, 32, 33 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
(0[,)+∞)) |
| 35 | 34, 26 | ifclda 4561 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 37 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) |
| 38 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) |
| 39 | 18, 28, 36, 37, 38 | offval2 7717 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
| 40 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵))) |
| 41 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) =
(abs‘(ℑ‘𝐵))) |
| 42 | 40, 41 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) =
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
| 43 | | iftrue 4531 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
| 44 | 42, 43 | eqtr4d 2780 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 45 | | 00id 11436 |
. . . . . . . . . 10
⊢ (0 + 0) =
0 |
| 46 | | iffalse 4534 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = 0) |
| 47 | | iffalse 4534 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) = 0) |
| 48 | 46, 47 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 +
0)) |
| 49 | | iffalse 4534 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
| 50 | 45, 48, 49 | 3eqtr4a 2803 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 51 | 44, 50 | pm2.61i 182 |
. . . . . . . 8
⊢ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) |
| 52 | 51 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 53 | 39, 52 | eqtr2di 2794 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
| 54 | 53 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 55 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) |
| 56 | 6 | iblcn 25834 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
| 57 | 2, 56 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
| 58 | 57 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
| 59 | 5, 2, 55, 58, 19 | iblabsnclem 37690 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)) |
| 60 | 59 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn) |
| 61 | 28 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
| 62 | 59 | simprd 495 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ) |
| 63 | 36 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
| 64 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) |
| 65 | 57 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
| 66 | 5, 2, 64, 65, 29 | iblabsnclem 37690 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)) |
| 67 | 66 | simprd 495 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ) |
| 68 | 60, 61, 62, 63, 67 | itg2addnc 37681 |
. . . . 5
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 69 | 54, 68 | eqtrd 2777 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 70 | 62, 67 | readdcld 11290 |
. . . 4
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈
ℝ) |
| 71 | 69, 70 | eqeltrd 2841 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈
ℝ) |
| 72 | 21, 31 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ ℝ) |
| 73 | 72 | rexrd 11311 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈
ℝ*) |
| 74 | 21, 31, 22, 32 | addge0d 11839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
| 75 | | elxrge0 13497 |
. . . . . . . 8
⊢
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,]+∞) ↔
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ*
∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
| 76 | 73, 74, 75 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ (0[,]+∞)) |
| 77 | 76, 13 | ifclda 4561 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,]+∞)) |
| 78 | 77 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,]+∞)) |
| 79 | 78 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,]+∞)) |
| 80 | | ax-icn 11214 |
. . . . . . . . . . 11
⊢ i ∈
ℂ |
| 81 | | mulcl 11239 |
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
| 82 | 80, 30, 81 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (i · (ℑ‘𝐵)) ∈
ℂ) |
| 83 | 20, 82 | abstrid 15495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) ≤
((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
| 84 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) |
| 85 | 84 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) |
| 86 | 6 | replimd 15236 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) |
| 87 | 86 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵))))) |
| 88 | 85, 87 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵))))) |
| 89 | 43 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
| 90 | | absmul 15333 |
. . . . . . . . . . . . 13
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i
· (ℑ‘𝐵))) = ((abs‘i) ·
(abs‘(ℑ‘𝐵)))) |
| 91 | 80, 30, 90 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) =
((abs‘i) · (abs‘(ℑ‘𝐵)))) |
| 92 | | absi 15325 |
. . . . . . . . . . . . . 14
⊢
(abs‘i) = 1 |
| 93 | 92 | oveq1i 7441 |
. . . . . . . . . . . . 13
⊢
((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 ·
(abs‘(ℑ‘𝐵))) |
| 94 | 31 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℂ) |
| 95 | 94 | mullidd 11279 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
| 96 | 93, 95 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘i) ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
| 97 | 91, 96 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i ·
(ℑ‘𝐵)))) |
| 98 | 97 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
| 99 | 89, 98 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
| 100 | 83, 88, 99 | 3brtr4d 5175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 101 | 100 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
| 102 | | 0le0 12367 |
. . . . . . . . 9
⊢ 0 ≤
0 |
| 103 | 102 | a1i 11 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
| 104 | | iffalse 4534 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = 0) |
| 105 | 103, 104,
49 | 3brtr4d 5175 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 106 | 101, 105 | pm2.61d1 180 |
. . . . . 6
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 107 | 106 | ralrimivw 3150 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 108 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) |
| 109 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
| 110 | 18, 15, 78, 108, 109 | ofrfval2 7718 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
| 111 | 107, 110 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
| 112 | | itg2le 25774 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) |
| 113 | 16, 79, 111, 112 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) |
| 114 | | itg2lecl 25773 |
. . 3
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
| 115 | 16, 71, 113, 114 | syl3anc 1373 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
| 116 | 7, 9 | iblpos 25828 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ))) |
| 117 | 1, 115, 116 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |