Proof of Theorem ibladdnc
| Step | Hyp | Ref
| Expression |
| 1 | | ibladdnc.m |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) |
| 2 | | ibladdnc.2 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 3 | | iblmbf 25725 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 5 | | ibladdnc.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 6 | 4, 5 | mbfmptcl 25594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 7 | 6 | recld 15218 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 8 | | ibladdnc.4 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 9 | | iblmbf 25725 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 11 | | ibladdnc.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 12 | 10, 11 | mbfmptcl 25594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 13 | 12 | recld 15218 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℝ) |
| 14 | 6, 12 | readdd 15238 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶))) |
| 15 | 6 | ismbfcn2 25596 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
| 16 | 4, 15 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
| 17 | 16 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
| 18 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
| 19 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
| 20 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
| 21 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
| 22 | 18, 19, 20, 21, 5 | iblcnlem 25747 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)))) |
| 23 | 2, 22 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ))) |
| 24 | 23 | simp2d 1143 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ)) |
| 25 | 24 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈
ℝ) |
| 26 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) |
| 27 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) |
| 28 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) |
| 29 | | eqid 2736 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) |
| 30 | 26, 27, 28, 29, 11 | iblcnlem 25747 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)))) |
| 31 | 8, 30 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ))) |
| 32 | 31 | simp2d 1143 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ)) |
| 33 | 32 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈
ℝ) |
| 34 | 7, 13, 14, 17, 25, 33 | ibladdnclem 37705 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 35 | 7 | renegcld 11669 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐵) ∈ ℝ) |
| 36 | 13 | renegcld 11669 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐶) ∈ ℝ) |
| 37 | 14 | negeqd 11481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = -((ℜ‘𝐵) + (ℜ‘𝐶))) |
| 38 | 7 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 39 | 13 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
| 40 | 38, 39 | negdid 11612 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℜ‘𝐵) + (ℜ‘𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
| 41 | 37, 40 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
| 42 | 7, 17 | mbfneg 25608 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℜ‘𝐵)) ∈ MblFn) |
| 43 | 24 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ) |
| 44 | 32 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ) |
| 45 | 35, 36, 41, 42, 43, 44 | ibladdnclem 37705 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 46 | 34, 45 | jca 511 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
| 47 | 6 | imcld 15219 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 48 | 12 | imcld 15219 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℝ) |
| 49 | 6, 12 | imaddd 15239 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶))) |
| 50 | 16 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
| 51 | 23 | simp3d 1144 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)) |
| 52 | 51 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈
ℝ) |
| 53 | 31 | simp3d 1144 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)) |
| 54 | 53 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈
ℝ) |
| 55 | 47, 48, 49, 50, 52, 54 | ibladdnclem 37705 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 56 | 47 | renegcld 11669 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐵) ∈ ℝ) |
| 57 | 48 | renegcld 11669 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℝ) |
| 58 | 49 | negeqd 11481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = -((ℑ‘𝐵) + (ℑ‘𝐶))) |
| 59 | 47 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 60 | 48 | recnd 11268 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
| 61 | 59, 60 | negdid 11612 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℑ‘𝐵) + (ℑ‘𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
| 62 | 58, 61 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
| 63 | 47, 50 | mbfneg 25608 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐵)) ∈ MblFn) |
| 64 | 51 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ) |
| 65 | 53 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ) |
| 66 | 56, 57, 62, 63, 64, 65 | ibladdnclem 37705 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
| 67 | 55, 66 | jca 511 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
| 68 | | eqid 2736 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) |
| 69 | | eqid 2736 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) |
| 70 | | eqid 2736 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) |
| 71 | | eqid 2736 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) |
| 72 | | ovexd 7445 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ V) |
| 73 | 68, 69, 70, 71, 72 | iblcnlem 25747 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)))) |
| 74 | 1, 46, 67, 73 | mpbir3and 1343 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |