Proof of Theorem ibladdnc
Step | Hyp | Ref
| Expression |
1 | | ibladdnc.m |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) |
2 | | ibladdnc.2 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
3 | | iblmbf 24837 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
5 | | ibladdnc.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
6 | 4, 5 | mbfmptcl 24705 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
7 | 6 | recld 14833 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
8 | | ibladdnc.4 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
9 | | iblmbf 24837 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
11 | | ibladdnc.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
12 | 10, 11 | mbfmptcl 24705 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
13 | 12 | recld 14833 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℝ) |
14 | 6, 12 | readdd 14853 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶))) |
15 | 6 | ismbfcn2 24707 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
16 | 4, 15 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
17 | 16 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
22 | 18, 19, 20, 21, 5 | iblcnlem 24858 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)))) |
23 | 2, 22 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ))) |
24 | 23 | simp2d 1141 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ)) |
25 | 24 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈
ℝ) |
26 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) |
29 | | eqid 2738 |
. . . . . . . 8
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) |
30 | 26, 27, 28, 29, 11 | iblcnlem 24858 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)))) |
31 | 8, 30 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ))) |
32 | 31 | simp2d 1141 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ)) |
33 | 32 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈
ℝ) |
34 | 7, 13, 14, 17, 25, 33 | ibladdnclem 35760 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
35 | 7 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐵) ∈ ℝ) |
36 | 13 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘𝐶) ∈ ℝ) |
37 | 14 | negeqd 11145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = -((ℜ‘𝐵) + (ℜ‘𝐶))) |
38 | 7 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
39 | 13 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
40 | 38, 39 | negdid 11275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℜ‘𝐵) + (ℜ‘𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
41 | 37, 40 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℜ‘(𝐵 + 𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶))) |
42 | 7, 17 | mbfneg 24719 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℜ‘𝐵)) ∈ MblFn) |
43 | 24 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈
ℝ) |
44 | 32 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈
ℝ) |
45 | 35, 36, 41, 42, 43, 44 | ibladdnclem 35760 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
46 | 34, 45 | jca 511 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
47 | 6 | imcld 14834 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
48 | 12 | imcld 14834 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℝ) |
49 | 6, 12 | imaddd 14854 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶))) |
50 | 16 | simprd 495 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
51 | 23 | simp3d 1142 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ)) |
52 | 51 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈
ℝ) |
53 | 31 | simp3d 1142 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ)) |
54 | 53 | simpld 494 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈
ℝ) |
55 | 47, 48, 49, 50, 52, 54 | ibladdnclem 35760 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
56 | 47 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐵) ∈ ℝ) |
57 | 48 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℝ) |
58 | 49 | negeqd 11145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = -((ℑ‘𝐵) + (ℑ‘𝐶))) |
59 | 47 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
60 | 48 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
61 | 59, 60 | negdid 11275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -((ℑ‘𝐵) + (ℑ‘𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
62 | 58, 61 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘(𝐵 + 𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶))) |
63 | 47, 50 | mbfneg 24719 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐵)) ∈ MblFn) |
64 | 51 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈
ℝ) |
65 | 53 | simprd 495 |
. . . 4
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈
ℝ) |
66 | 56, 57, 62, 63, 64, 65 | ibladdnclem 35760 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) |
67 | 55, 66 | jca 511 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)) |
68 | | eqid 2738 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) |
69 | | eqid 2738 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) |
70 | | eqid 2738 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) |
71 | | eqid 2738 |
. . 3
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) |
72 | | ovexd 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 + 𝐶) ∈ V) |
73 | 68, 69, 70, 71, 72 | iblcnlem 24858 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)))) |
74 | 1, 46, 67, 73 | mpbir3and 1340 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈
𝐿1) |