MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgadd Structured version   Visualization version   GIF version

Theorem itgadd 25875
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgadd (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgadd
StepHypRef Expression
1 itgadd.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25817 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgadd.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25685 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 itgadd.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 25817 . . . . . . . . 9 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 itgadd.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 25685 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10readdd 15250 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
1211itgeq2dv 25832 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥)
135recld 15230 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
145iblcn 25849 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
151, 14mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1615simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1710recld 15230 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
1810iblcn 25849 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)))
196, 18mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1))
2019simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1)
2113, 16, 17, 20, 13, 17itgaddlem2 25874 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
2212, 21eqtrd 2775 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
235, 10imaddd 15251 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
2423itgeq2dv 25832 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥)
255imcld 15231 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
2615simprd 495 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
2710imcld 15231 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2819simprd 495 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)
2925, 26, 27, 28, 25, 27itgaddlem2 25874 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
3024, 29eqtrd 2775 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
3130oveq2d 7447 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)))
32 ax-icn 11212 . . . . . . 7 i ∈ ℂ
3332a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
3425, 26itgcl 25834 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
3527, 28itgcl 25834 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ)
3633, 34, 35adddid 11283 . . . . 5 (𝜑 → (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
3731, 36eqtrd 2775 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
3822, 37oveq12d 7449 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
3913, 16itgcl 25834 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
4017, 20itgcl 25834 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐶) d𝑥 ∈ ℂ)
41 mulcl 11237 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
4232, 34, 41sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
43 mulcl 11237 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
4432, 35, 43sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
4539, 40, 42, 44add4d 11488 . . 3 (𝜑 → ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
4638, 45eqtrd 2775 . 2 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
47 ovexd 7466 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
484, 1, 9, 6ibladd 25871 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
4947, 48itgcnval 25850 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)))
504, 1itgcnval 25850 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
519, 6itgcnval 25850 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
5250, 51oveq12d 7449 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
5346, 49, 523eqtr4d 2785 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  ici 11155   + caddc 11156   · cmul 11158  cre 15133  cim 15134  MblFncmbf 25663  𝐿1cibl 25666  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719
This theorem is referenced by:  itgsub  25876  itgfsum  25877  itgmulc2  25884  ftc1lem4  26095  itgparts  26103  areaquad  43205  fourierdlem83  46145  fourierdlem95  46157
  Copyright terms: Public domain W3C validator