Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Visualization version   GIF version

Theorem itgmulc2nc 33901
Description: Choice-free analogue of itgmulc2 23891. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgmulc2nc (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
21recld 14219 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
32recnd 10322 . . . . . . 7 (𝜑 → (ℜ‘𝐶) ∈ ℂ)
43adantr 472 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 23825 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 23694 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
109recld 14219 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1110recnd 10322 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
124, 11mulcld 10314 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
139iblcn 23856 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
145, 13mpbid 223 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1514simpld 488 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
16 itgmulc2nc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
17 ovexd 6876 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
1816, 17mbfdm2 23695 . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
19 fconstmpt 5333 . . . . . . . . 9 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
2019a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
21 eqidd 2766 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
2218, 4, 10, 20, 21offval2 7112 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
23 iblmbf 23825 . . . . . . . . 9 ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2415, 23syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2511fmpttd 6575 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
2624, 2, 25mbfmulc2re 23706 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
2722, 26eqeltrrd 2845 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
283, 10, 15, 27iblmulc2nc 33898 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
2912, 28itgcl 23841 . . . 4 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
30 ax-icn 10248 . . . . 5 i ∈ ℂ
319imcld 14220 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3231recnd 10322 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
334, 32mulcld 10314 . . . . . 6 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3414simprd 489 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
35 eqidd 2766 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
3618, 4, 31, 20, 35offval2 7112 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
37 iblmbf 23825 . . . . . . . . . 10 ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3834, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3932fmpttd 6575 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4038, 2, 39mbfmulc2re 23706 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4136, 40eqeltrrd 2845 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
423, 31, 34, 41iblmulc2nc 33898 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
4333, 42itgcl 23841 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
44 mulcl 10273 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
4530, 43, 44sylancr 581 . . . 4 (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
461imcld 14220 . . . . . . . . 9 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
4746recnd 10322 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℂ)
4847negcld 10633 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℂ)
4948adantr 472 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℂ)
5049, 32mulcld 10314 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
51 fconstmpt 5333 . . . . . . . . 9 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
5318, 49, 31, 52, 35offval2 7112 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
5446renegcld 10711 . . . . . . . 8 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
5538, 54, 39mbfmulc2re 23706 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5653, 55eqeltrrd 2845 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
5748, 31, 34, 56iblmulc2nc 33898 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
5850, 57itgcl 23841 . . . 4 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
5947adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6059, 11mulcld 10314 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
61 fconstmpt 5333 . . . . . . . . . 10 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
6261a1i 11 . . . . . . . . 9 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
6318, 59, 10, 62, 21offval2 7112 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
6424, 46, 25mbfmulc2re 23706 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6563, 64eqeltrrd 2845 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
6647, 10, 15, 65iblmulc2nc 33898 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
6760, 66itgcl 23841 . . . . 5 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
68 mulcl 10273 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
6930, 67, 68sylancr 581 . . . 4 (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7029, 45, 58, 69add4d 10518 . . 3 (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
7130a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
7271, 47mulcld 10314 . . . . 5 (𝜑 → (i · (ℑ‘𝐶)) ∈ ℂ)
738, 5itgcl 23841 . . . . 5 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
743, 72, 73adddird 10319 . . . 4 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)))
758, 5itgcnval 23857 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
7675oveq2d 6858 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
7710, 15itgcl 23841 . . . . . . 7 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
7831, 34itgcl 23841 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
79 mulcl 10273 . . . . . . . 8 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
8030, 78, 79sylancr 581 . . . . . . 7 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
813, 77, 80adddid 10318 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
823, 10, 15, 27, 2, 10itgmulc2nclem2 33900 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥)
833, 71, 78mul12d 10499 . . . . . . . 8 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
843, 31, 34, 41, 2, 31itgmulc2nclem2 33900 . . . . . . . . 9 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)
8584oveq2d 6858 . . . . . . . 8 (𝜑 → (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8683, 85eqtrd 2799 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8782, 86oveq12d 6860 . . . . . 6 (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8876, 81, 873eqtrd 2803 . . . . 5 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8975oveq2d 6858 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9072, 77, 80adddid 10318 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9171, 47, 77mulassd 10317 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)))
9247, 10, 15, 65, 46, 10itgmulc2nclem2 33900 . . . . . . . . . 10 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)
9392oveq2d 6858 . . . . . . . . 9 (𝜑 → (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9491, 93eqtrd 2799 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9571, 47, 71, 78mul4d 10502 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
96 ixi 10910 . . . . . . . . . . 11 (i · i) = -1
9796oveq1i 6852 . . . . . . . . . 10 ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
9847, 78mulcld 10314 . . . . . . . . . . 11 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
9998mulm1d 10736 . . . . . . . . . 10 (𝜑 → (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10097, 99syl5eq 2811 . . . . . . . . 9 (𝜑 → ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10147, 78mulneg1d 10737 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10248, 31, 34, 56, 54, 31itgmulc2nclem2 33900 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
103101, 102eqtr3d 2801 . . . . . . . . 9 (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10495, 100, 1033eqtrd 2803 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10594, 104oveq12d 6860 . . . . . . 7 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
10669, 58addcomd 10492 . . . . . . 7 (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
107105, 106eqtrd 2799 . . . . . 6 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10889, 90, 1073eqtrd 2803 . . . . 5 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10988, 108oveq12d 6860 . . . 4 (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11074, 109eqtrd 2799 . . 3 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11159, 32mulcld 10314 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
11218, 59, 31, 62, 35offval2 7112 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))))
11338, 46, 39mbfmulc2re 23706 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
114112, 113eqeltrrd 2845 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
11547, 31, 34, 114iblmulc2nc 33898 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
1161adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
117116, 9mulcld 10314 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
118 eqidd 2766 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵)))
119 ref 14137 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
120119a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
121120feqmptd 6438 . . . . . . . . 9 (𝜑 → ℜ = (𝑘 ∈ ℂ ↦ (ℜ‘𝑘)))
122 fveq2 6375 . . . . . . . . 9 (𝑘 = (𝐶 · 𝐵) → (ℜ‘𝑘) = (ℜ‘(𝐶 · 𝐵)))
123117, 118, 121, 122fmptco 6587 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
124116, 9remuld 14243 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
125124mpteq2dva 4903 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
126123, 125eqtrd 2799 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
127117fmpttd 6575 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
128 ismbfcn 23687 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
129127, 128syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
13016, 129mpbid 223 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn))
131130simpld 488 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
132126, 131eqeltrrd 2845 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) ∈ MblFn)
13312, 28, 111, 115, 132itgsubnc 33895 . . . . 5 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
134124itgeq2dv 23839 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥)
135111, 115itgneg 23861 . . . . . . . 8 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
13659, 32mulneg1d 10737 . . . . . . . . 9 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
137136itgeq2dv 23839 . . . . . . . 8 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
138135, 137eqtr4d 2802 . . . . . . 7 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
139138oveq2d 6858 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
140111, 115itgcl 23841 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
14129, 140negsubd 10652 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
142139, 141eqtr3d 2801 . . . . 5 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
143133, 134, 1423eqtr4d 2809 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
144116, 9immuld 14244 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
145144itgeq2dv 23839 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥)
146 imf 14138 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
148147feqmptd 6438 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑘 ∈ ℂ ↦ (ℑ‘𝑘)))
149 fveq2 6375 . . . . . . . . . . 11 (𝑘 = (𝐶 · 𝐵) → (ℑ‘𝑘) = (ℑ‘(𝐶 · 𝐵)))
150117, 118, 148, 149fmptco 6587 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
151144mpteq2dva 4903 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
152150, 151eqtrd 2799 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
153130simprd 489 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
154152, 153eqeltrrd 2845 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) ∈ MblFn)
15533, 42, 60, 66, 154itgaddnc 33893 . . . . . . 7 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
156145, 155eqtrd 2799 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
157156oveq2d 6858 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
15871, 43, 67adddid 10318 . . . . 5 (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
159157, 158eqtrd 2799 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
160143, 159oveq12d 6860 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
16170, 110, 1603eqtr4d 2809 . 2 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
1621replimd 14222 . . 3 (𝜑𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶))))
163162oveq1d 6857 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥))
1641, 8, 5, 16iblmulc2nc 33898 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
165117, 164itgcnval 23857 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
166161, 163, 1653eqtr4d 2809 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  {csn 4334  cmpt 4888   × cxp 5275  dom cdm 5277  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cmin 10520  -cneg 10521  cre 14122  cim 14123  volcvol 23521  MblFncmbf 23672  𝐿1cibl 23675  citg 23676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-rest 16349  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-itg 23681  df-0p 23728
This theorem is referenced by:  itgabsnc  33902
  Copyright terms: Public domain W3C validator