Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Visualization version   GIF version

Theorem itgmulc2nc 37728
Description: Choice-free analogue of itgmulc2 25757. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgmulc2nc (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
21recld 15096 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
32recnd 11135 . . . . . . 7 (𝜑 → (ℜ‘𝐶) ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 25690 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 25559 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
109recld 15096 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1110recnd 11135 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
124, 11mulcld 11127 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
139iblcn 25722 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
145, 13mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1514simpld 494 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
16 itgmulc2nc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
17 ovexd 7376 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
1816, 17mbfdm2 25560 . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
19 fconstmpt 5673 . . . . . . . . 9 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
2019a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
21 eqidd 2732 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
2218, 4, 10, 20, 21offval2 7625 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
23 iblmbf 25690 . . . . . . . . 9 ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2415, 23syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2511fmpttd 7043 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
2624, 2, 25mbfmulc2re 25571 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
2722, 26eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
283, 10, 15, 27iblmulc2nc 37725 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
2912, 28itgcl 25707 . . . 4 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
30 ax-icn 11060 . . . . 5 i ∈ ℂ
319imcld 15097 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3231recnd 11135 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
334, 32mulcld 11127 . . . . . 6 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3414simprd 495 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
35 eqidd 2732 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
3618, 4, 31, 20, 35offval2 7625 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
37 iblmbf 25690 . . . . . . . . . 10 ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3834, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3932fmpttd 7043 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4038, 2, 39mbfmulc2re 25571 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4136, 40eqeltrrd 2832 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
423, 31, 34, 41iblmulc2nc 37725 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
4333, 42itgcl 25707 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
44 mulcl 11085 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
4530, 43, 44sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
461imcld 15097 . . . . . . . . 9 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
4746recnd 11135 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℂ)
4847negcld 11454 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℂ)
4948adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℂ)
5049, 32mulcld 11127 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
51 fconstmpt 5673 . . . . . . . . 9 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
5318, 49, 31, 52, 35offval2 7625 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
5446renegcld 11539 . . . . . . . 8 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
5538, 54, 39mbfmulc2re 25571 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5653, 55eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
5748, 31, 34, 56iblmulc2nc 37725 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
5850, 57itgcl 25707 . . . 4 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
5947adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6059, 11mulcld 11127 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
61 fconstmpt 5673 . . . . . . . . . 10 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
6261a1i 11 . . . . . . . . 9 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
6318, 59, 10, 62, 21offval2 7625 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
6424, 46, 25mbfmulc2re 25571 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6563, 64eqeltrrd 2832 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
6647, 10, 15, 65iblmulc2nc 37725 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
6760, 66itgcl 25707 . . . . 5 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
68 mulcl 11085 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
6930, 67, 68sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7029, 45, 58, 69add4d 11337 . . 3 (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
7130a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
7271, 47mulcld 11127 . . . . 5 (𝜑 → (i · (ℑ‘𝐶)) ∈ ℂ)
738, 5itgcl 25707 . . . . 5 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
743, 72, 73adddird 11132 . . . 4 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)))
758, 5itgcnval 25723 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
7675oveq2d 7357 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
7710, 15itgcl 25707 . . . . . . 7 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
7831, 34itgcl 25707 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
79 mulcl 11085 . . . . . . . 8 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
8030, 78, 79sylancr 587 . . . . . . 7 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
813, 77, 80adddid 11131 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
823, 10, 15, 27, 2, 10itgmulc2nclem2 37727 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥)
833, 71, 78mul12d 11317 . . . . . . . 8 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
843, 31, 34, 41, 2, 31itgmulc2nclem2 37727 . . . . . . . . 9 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)
8584oveq2d 7357 . . . . . . . 8 (𝜑 → (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8683, 85eqtrd 2766 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8782, 86oveq12d 7359 . . . . . 6 (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8876, 81, 873eqtrd 2770 . . . . 5 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8975oveq2d 7357 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9072, 77, 80adddid 11131 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9171, 47, 77mulassd 11130 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)))
9247, 10, 15, 65, 46, 10itgmulc2nclem2 37727 . . . . . . . . . 10 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)
9392oveq2d 7357 . . . . . . . . 9 (𝜑 → (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9491, 93eqtrd 2766 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9571, 47, 71, 78mul4d 11320 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
96 ixi 11741 . . . . . . . . . . 11 (i · i) = -1
9796oveq1i 7351 . . . . . . . . . 10 ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
9847, 78mulcld 11127 . . . . . . . . . . 11 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
9998mulm1d 11564 . . . . . . . . . 10 (𝜑 → (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10097, 99eqtrid 2778 . . . . . . . . 9 (𝜑 → ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10147, 78mulneg1d 11565 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10248, 31, 34, 56, 54, 31itgmulc2nclem2 37727 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
103101, 102eqtr3d 2768 . . . . . . . . 9 (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10495, 100, 1033eqtrd 2770 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10594, 104oveq12d 7359 . . . . . . 7 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
10669, 58addcomd 11310 . . . . . . 7 (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
107105, 106eqtrd 2766 . . . . . 6 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10889, 90, 1073eqtrd 2770 . . . . 5 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10988, 108oveq12d 7359 . . . 4 (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11074, 109eqtrd 2766 . . 3 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11159, 32mulcld 11127 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
11218, 59, 31, 62, 35offval2 7625 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))))
11338, 46, 39mbfmulc2re 25571 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
114112, 113eqeltrrd 2832 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
11547, 31, 34, 114iblmulc2nc 37725 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
1161adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
117116, 9mulcld 11127 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
118 eqidd 2732 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵)))
119 ref 15014 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
120119a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
121120feqmptd 6885 . . . . . . . . 9 (𝜑 → ℜ = (𝑘 ∈ ℂ ↦ (ℜ‘𝑘)))
122 fveq2 6817 . . . . . . . . 9 (𝑘 = (𝐶 · 𝐵) → (ℜ‘𝑘) = (ℜ‘(𝐶 · 𝐵)))
123117, 118, 121, 122fmptco 7057 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
124116, 9remuld 15120 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
125124mpteq2dva 5179 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
126123, 125eqtrd 2766 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
127117fmpttd 7043 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
128 ismbfcn 25552 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
129127, 128syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
13016, 129mpbid 232 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn))
131130simpld 494 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
132126, 131eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) ∈ MblFn)
13312, 28, 111, 115, 132itgsubnc 37722 . . . . 5 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
134124itgeq2dv 25705 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥)
135111, 115itgneg 25727 . . . . . . . 8 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
13659, 32mulneg1d 11565 . . . . . . . . 9 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
137136itgeq2dv 25705 . . . . . . . 8 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
138135, 137eqtr4d 2769 . . . . . . 7 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
139138oveq2d 7357 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
140111, 115itgcl 25707 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
14129, 140negsubd 11473 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
142139, 141eqtr3d 2768 . . . . 5 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
143133, 134, 1423eqtr4d 2776 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
144116, 9immuld 15121 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
145144itgeq2dv 25705 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥)
146 imf 15015 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
148147feqmptd 6885 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑘 ∈ ℂ ↦ (ℑ‘𝑘)))
149 fveq2 6817 . . . . . . . . . . 11 (𝑘 = (𝐶 · 𝐵) → (ℑ‘𝑘) = (ℑ‘(𝐶 · 𝐵)))
150117, 118, 148, 149fmptco 7057 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
151144mpteq2dva 5179 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
152150, 151eqtrd 2766 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
153130simprd 495 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
154152, 153eqeltrrd 2832 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) ∈ MblFn)
15533, 42, 60, 66, 154itgaddnc 37720 . . . . . . 7 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
156145, 155eqtrd 2766 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
157156oveq2d 7357 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
15871, 43, 67adddid 11131 . . . . 5 (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
159157, 158eqtrd 2766 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
160143, 159oveq12d 7359 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
16170, 110, 1603eqtr4d 2776 . 2 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
1621replimd 15099 . . 3 (𝜑𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶))))
163162oveq1d 7356 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥))
1641, 8, 5, 16iblmulc2nc 37725 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
165117, 164itgcnval 25723 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
166161, 163, 1653eqtr4d 2776 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571  cmpt 5167   × cxp 5609  dom cdm 5611  ccom 5615  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603  cc 10999  cr 11000  1c1 11002  ici 11003   + caddc 11004   · cmul 11006  cmin 11339  -cneg 11340  cre 14999  cim 15000  volcvol 25386  MblFncmbf 25537  𝐿1cibl 25540  citg 25541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-rest 17321  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-bases 22856  df-cmp 23297  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543  df-itg2 25544  df-ibl 25545  df-itg 25546  df-0p 25593
This theorem is referenced by:  itgabsnc  37729
  Copyright terms: Public domain W3C validator