Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Visualization version   GIF version

Theorem itgmulc2nc 36146
Description: Choice-free analogue of itgmulc2 25198. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgmulc2nc (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
21recld 15079 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
32recnd 11183 . . . . . . 7 (𝜑 → (ℜ‘𝐶) ∈ ℂ)
43adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 25132 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 25000 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
109recld 15079 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1110recnd 11183 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
124, 11mulcld 11175 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
139iblcn 25163 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
145, 13mpbid 231 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1514simpld 495 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
16 itgmulc2nc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
17 ovexd 7392 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
1816, 17mbfdm2 25001 . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
19 fconstmpt 5694 . . . . . . . . 9 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
2019a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
21 eqidd 2737 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
2218, 4, 10, 20, 21offval2 7637 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
23 iblmbf 25132 . . . . . . . . 9 ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2415, 23syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2511fmpttd 7063 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
2624, 2, 25mbfmulc2re 25012 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
2722, 26eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
283, 10, 15, 27iblmulc2nc 36143 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
2912, 28itgcl 25148 . . . 4 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
30 ax-icn 11110 . . . . 5 i ∈ ℂ
319imcld 15080 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3231recnd 11183 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
334, 32mulcld 11175 . . . . . 6 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3414simprd 496 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
35 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
3618, 4, 31, 20, 35offval2 7637 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
37 iblmbf 25132 . . . . . . . . . 10 ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3834, 37syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3932fmpttd 7063 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4038, 2, 39mbfmulc2re 25012 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4136, 40eqeltrrd 2839 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
423, 31, 34, 41iblmulc2nc 36143 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
4333, 42itgcl 25148 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
44 mulcl 11135 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
4530, 43, 44sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
461imcld 15080 . . . . . . . . 9 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
4746recnd 11183 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℂ)
4847negcld 11499 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℂ)
4948adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℂ)
5049, 32mulcld 11175 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
51 fconstmpt 5694 . . . . . . . . 9 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
5318, 49, 31, 52, 35offval2 7637 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
5446renegcld 11582 . . . . . . . 8 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
5538, 54, 39mbfmulc2re 25012 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5653, 55eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
5748, 31, 34, 56iblmulc2nc 36143 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
5850, 57itgcl 25148 . . . 4 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
5947adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6059, 11mulcld 11175 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
61 fconstmpt 5694 . . . . . . . . . 10 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
6261a1i 11 . . . . . . . . 9 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
6318, 59, 10, 62, 21offval2 7637 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
6424, 46, 25mbfmulc2re 25012 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6563, 64eqeltrrd 2839 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
6647, 10, 15, 65iblmulc2nc 36143 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
6760, 66itgcl 25148 . . . . 5 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
68 mulcl 11135 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
6930, 67, 68sylancr 587 . . . 4 (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7029, 45, 58, 69add4d 11383 . . 3 (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
7130a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
7271, 47mulcld 11175 . . . . 5 (𝜑 → (i · (ℑ‘𝐶)) ∈ ℂ)
738, 5itgcl 25148 . . . . 5 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
743, 72, 73adddird 11180 . . . 4 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)))
758, 5itgcnval 25164 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
7675oveq2d 7373 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
7710, 15itgcl 25148 . . . . . . 7 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
7831, 34itgcl 25148 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
79 mulcl 11135 . . . . . . . 8 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
8030, 78, 79sylancr 587 . . . . . . 7 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
813, 77, 80adddid 11179 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
823, 10, 15, 27, 2, 10itgmulc2nclem2 36145 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥)
833, 71, 78mul12d 11364 . . . . . . . 8 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
843, 31, 34, 41, 2, 31itgmulc2nclem2 36145 . . . . . . . . 9 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)
8584oveq2d 7373 . . . . . . . 8 (𝜑 → (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8683, 85eqtrd 2776 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8782, 86oveq12d 7375 . . . . . 6 (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8876, 81, 873eqtrd 2780 . . . . 5 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
8975oveq2d 7373 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9072, 77, 80adddid 11179 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9171, 47, 77mulassd 11178 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)))
9247, 10, 15, 65, 46, 10itgmulc2nclem2 36145 . . . . . . . . . 10 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)
9392oveq2d 7373 . . . . . . . . 9 (𝜑 → (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9491, 93eqtrd 2776 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9571, 47, 71, 78mul4d 11367 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
96 ixi 11784 . . . . . . . . . . 11 (i · i) = -1
9796oveq1i 7367 . . . . . . . . . 10 ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
9847, 78mulcld 11175 . . . . . . . . . . 11 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
9998mulm1d 11607 . . . . . . . . . 10 (𝜑 → (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10097, 99eqtrid 2788 . . . . . . . . 9 (𝜑 → ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10147, 78mulneg1d 11608 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10248, 31, 34, 56, 54, 31itgmulc2nclem2 36145 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
103101, 102eqtr3d 2778 . . . . . . . . 9 (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10495, 100, 1033eqtrd 2780 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10594, 104oveq12d 7375 . . . . . . 7 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
10669, 58addcomd 11357 . . . . . . 7 (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
107105, 106eqtrd 2776 . . . . . 6 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10889, 90, 1073eqtrd 2780 . . . . 5 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
10988, 108oveq12d 7375 . . . 4 (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11074, 109eqtrd 2776 . . 3 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11159, 32mulcld 11175 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
11218, 59, 31, 62, 35offval2 7637 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))))
11338, 46, 39mbfmulc2re 25012 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
114112, 113eqeltrrd 2839 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
11547, 31, 34, 114iblmulc2nc 36143 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
1161adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
117116, 9mulcld 11175 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
118 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵)))
119 ref 14997 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
120119a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
121120feqmptd 6910 . . . . . . . . 9 (𝜑 → ℜ = (𝑘 ∈ ℂ ↦ (ℜ‘𝑘)))
122 fveq2 6842 . . . . . . . . 9 (𝑘 = (𝐶 · 𝐵) → (ℜ‘𝑘) = (ℜ‘(𝐶 · 𝐵)))
123117, 118, 121, 122fmptco 7075 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
124116, 9remuld 15103 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
125124mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
126123, 125eqtrd 2776 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
127117fmpttd 7063 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
128 ismbfcn 24993 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
129127, 128syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
13016, 129mpbid 231 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn))
131130simpld 495 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
132126, 131eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) ∈ MblFn)
13312, 28, 111, 115, 132itgsubnc 36140 . . . . 5 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
134124itgeq2dv 25146 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥)
135111, 115itgneg 25168 . . . . . . . 8 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
13659, 32mulneg1d 11608 . . . . . . . . 9 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
137136itgeq2dv 25146 . . . . . . . 8 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
138135, 137eqtr4d 2779 . . . . . . 7 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
139138oveq2d 7373 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
140111, 115itgcl 25148 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
14129, 140negsubd 11518 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
142139, 141eqtr3d 2778 . . . . 5 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
143133, 134, 1423eqtr4d 2786 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
144116, 9immuld 15104 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
145144itgeq2dv 25146 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥)
146 imf 14998 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
147146a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
148147feqmptd 6910 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑘 ∈ ℂ ↦ (ℑ‘𝑘)))
149 fveq2 6842 . . . . . . . . . . 11 (𝑘 = (𝐶 · 𝐵) → (ℑ‘𝑘) = (ℑ‘(𝐶 · 𝐵)))
150117, 118, 148, 149fmptco 7075 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
151144mpteq2dva 5205 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
152150, 151eqtrd 2776 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
153130simprd 496 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
154152, 153eqeltrrd 2839 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) ∈ MblFn)
15533, 42, 60, 66, 154itgaddnc 36138 . . . . . . 7 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
156145, 155eqtrd 2776 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
157156oveq2d 7373 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
15871, 43, 67adddid 11179 . . . . 5 (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
159157, 158eqtrd 2776 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
160143, 159oveq12d 7375 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
16170, 110, 1603eqtr4d 2786 . 2 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
1621replimd 15082 . . 3 (𝜑𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶))))
163162oveq1d 7372 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥))
1641, 8, 5, 16iblmulc2nc 36143 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
165117, 164itgcnval 25164 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
166161, 163, 1653eqtr4d 2786 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  {csn 4586  cmpt 5188   × cxp 5631  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386  cre 14982  cim 14983  volcvol 24827  MblFncmbf 24978  𝐿1cibl 24981  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034
This theorem is referenced by:  itgabsnc  36147
  Copyright terms: Public domain W3C validator