Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnclem1 Structured version   Visualization version   GIF version

Theorem itgaddnclem1 36541
Description: Lemma for itgaddnc 36543; cf. itgaddlem1 25339. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
itgaddnclem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgaddnclem.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgaddnclem.3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
itgaddnclem.4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
Assertion
Ref Expression
itgaddnclem1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnclem1
StepHypRef Expression
1 itgaddnclem.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgaddnclem.2 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
31, 2readdcld 11242 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4 ibladdnc.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 ibladdnc.2 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 ibladdnc.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
7 ibladdnc.4 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 ibladdnc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
94, 5, 6, 7, 8ibladdnc 36540 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
10 itgaddnclem.3 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
11 itgaddnclem.4 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
121, 2, 10, 11addge0d 11789 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐵 + 𝐶))
133, 9, 12itgposval 25312 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
141, 5, 10itgposval 25312 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
152, 7, 11itgposval 25312 . . . 4 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))))
1614, 15oveq12d 7426 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
17 iblmbf 25284 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
185, 17syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1918, 4mbfdm2 25153 . . . . . 6 (𝜑𝐴 ∈ dom vol)
20 mblss 25047 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
2119, 20syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
22 rembl 25056 . . . . . 6 ℝ ∈ dom vol
2322a1i 11 . . . . 5 (𝜑 → ℝ ∈ dom vol)
24 elrege0 13430 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
251, 10, 24sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
26 0e0icopnf 13434 . . . . . . . 8 0 ∈ (0[,)+∞)
2726a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2825, 27ifclda 4563 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
2928adantr 481 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
30 eldifn 4127 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
3130adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
32 iffalse 4537 . . . . . 6 𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 0)
3331, 32syl 17 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
34 iftrue 4534 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3534mpteq2ia 5251 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
3635, 18eqeltrid 2837 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3721, 23, 29, 33, 36mbfss 25162 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3828adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
3938fmpttd 7114 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
401, 10iblpos 25309 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
415, 40mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
4241simprd 496 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
43 elrege0 13430 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
442, 11, 43sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,)+∞))
4544, 27ifclda 4563 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4645adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4746fmpttd 7114 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)):ℝ⟶(0[,)+∞))
482, 11iblpos 25309 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)))
497, 48mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ))
5049simprd 496 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)
5137, 39, 42, 47, 50itg2addnc 36537 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
52 reex 11200 . . . . . . 7 ℝ ∈ V
5352a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
54 eqidd 2733 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
55 eqidd 2733 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
5653, 38, 46, 54, 55offval2 7689 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))))
57 iftrue 4534 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
5834, 57oveq12d 7426 . . . . . . . 8 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (𝐵 + 𝐶))
59 iftrue 4534 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶))
6058, 59eqtr4d 2775 . . . . . . 7 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
61 iffalse 4537 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
6232, 61oveq12d 7426 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (0 + 0))
63 00id 11388 . . . . . . . . 9 (0 + 0) = 0
6462, 63eqtrdi 2788 . . . . . . . 8 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = 0)
65 iffalse 4537 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = 0)
6664, 65eqtr4d 2775 . . . . . . 7 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
6760, 66pm2.61i 182 . . . . . 6 (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0)
6867mpteq2i 5253 . . . . 5 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))
6956, 68eqtrdi 2788 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0)))
7069fveq2d 6895 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7116, 51, 703eqtr2d 2778 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7213, 71eqtr4d 2775 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  wss 3948  ifcif 4528   class class class wbr 5148  cmpt 5231  dom cdm 5676  cfv 6543  (class class class)co 7408  f cof 7667  cr 11108  0cc0 11109   + caddc 11112  +∞cpnf 11244  cle 11248  [,)cico 13325  volcvol 24979  MblFncmbf 25130  2citg2 25132  𝐿1cibl 25133  citg 25134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-mod 13834  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cmp 22890  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-itg2 25137  df-ibl 25138  df-itg 25139  df-0p 25186
This theorem is referenced by:  itgaddnclem2  36542
  Copyright terms: Public domain W3C validator