Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnclem1 Structured version   Visualization version   GIF version

Theorem itgaddnclem1 37791
Description: Lemma for itgaddnc 37793; cf. itgaddlem1 25771. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
itgaddnclem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgaddnclem.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgaddnclem.3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
itgaddnclem.4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
Assertion
Ref Expression
itgaddnclem1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnclem1
StepHypRef Expression
1 itgaddnclem.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgaddnclem.2 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
31, 2readdcld 11152 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4 ibladdnc.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 ibladdnc.2 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 ibladdnc.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
7 ibladdnc.4 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 ibladdnc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
94, 5, 6, 7, 8ibladdnc 37790 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
10 itgaddnclem.3 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
11 itgaddnclem.4 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
121, 2, 10, 11addge0d 11704 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐵 + 𝐶))
133, 9, 12itgposval 25744 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
141, 5, 10itgposval 25744 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
152, 7, 11itgposval 25744 . . . 4 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))))
1614, 15oveq12d 7373 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
17 iblmbf 25715 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
185, 17syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1918, 4mbfdm2 25585 . . . . . 6 (𝜑𝐴 ∈ dom vol)
20 mblss 25479 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
2119, 20syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
22 rembl 25488 . . . . . 6 ℝ ∈ dom vol
2322a1i 11 . . . . 5 (𝜑 → ℝ ∈ dom vol)
24 elrege0 13361 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
251, 10, 24sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
26 0e0icopnf 13365 . . . . . . . 8 0 ∈ (0[,)+∞)
2726a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2825, 27ifclda 4512 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
2928adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
30 eldifn 4081 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
3130adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
32 iffalse 4485 . . . . . 6 𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 0)
3331, 32syl 17 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
34 iftrue 4482 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3534mpteq2ia 5190 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
3635, 18eqeltrid 2837 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3721, 23, 29, 33, 36mbfss 25594 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3828adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
3938fmpttd 7057 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
401, 10iblpos 25741 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
415, 40mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
4241simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
43 elrege0 13361 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
442, 11, 43sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,)+∞))
4544, 27ifclda 4512 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4645adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4746fmpttd 7057 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)):ℝ⟶(0[,)+∞))
482, 11iblpos 25741 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)))
497, 48mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ))
5049simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)
5137, 39, 42, 47, 50itg2addnc 37787 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
52 reex 11108 . . . . . . 7 ℝ ∈ V
5352a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
54 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
55 eqidd 2734 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
5653, 38, 46, 54, 55offval2 7639 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))))
57 iftrue 4482 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
5834, 57oveq12d 7373 . . . . . . . 8 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (𝐵 + 𝐶))
59 iftrue 4482 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶))
6058, 59eqtr4d 2771 . . . . . . 7 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
61 iffalse 4485 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
6232, 61oveq12d 7373 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (0 + 0))
63 00id 11299 . . . . . . . . 9 (0 + 0) = 0
6462, 63eqtrdi 2784 . . . . . . . 8 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = 0)
65 iffalse 4485 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = 0)
6664, 65eqtr4d 2771 . . . . . . 7 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
6760, 66pm2.61i 182 . . . . . 6 (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0)
6867mpteq2i 5191 . . . . 5 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))
6956, 68eqtrdi 2784 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0)))
7069fveq2d 6835 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7116, 51, 703eqtr2d 2774 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7213, 71eqtr4d 2771 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621  cfv 6489  (class class class)co 7355  f cof 7617  cr 11016  0cc0 11017   + caddc 11020  +∞cpnf 11154  cle 11158  [,)cico 13254  volcvol 25411  MblFncmbf 25562  2citg2 25564  𝐿1cibl 25565  citg 25566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-rest 17333  df-topgen 17354  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-top 22829  df-topon 22846  df-bases 22881  df-cmp 23322  df-ovol 25412  df-vol 25413  df-mbf 25567  df-itg1 25568  df-itg2 25569  df-ibl 25570  df-itg 25571  df-0p 25618
This theorem is referenced by:  itgaddnclem2  37792
  Copyright terms: Public domain W3C validator