Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnclem1 Structured version   Visualization version   GIF version

Theorem itgaddnclem1 35762
Description: Lemma for itgaddnc 35764; cf. itgaddlem1 24892. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
itgaddnclem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgaddnclem.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgaddnclem.3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
itgaddnclem.4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
Assertion
Ref Expression
itgaddnclem1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgaddnclem1
StepHypRef Expression
1 itgaddnclem.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgaddnclem.2 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
31, 2readdcld 10935 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
4 ibladdnc.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 ibladdnc.2 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 ibladdnc.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
7 ibladdnc.4 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 ibladdnc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
94, 5, 6, 7, 8ibladdnc 35761 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
10 itgaddnclem.3 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
11 itgaddnclem.4 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
121, 2, 10, 11addge0d 11481 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐵 + 𝐶))
133, 9, 12itgposval 24865 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
141, 5, 10itgposval 24865 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
152, 7, 11itgposval 24865 . . . 4 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))))
1614, 15oveq12d 7273 . . 3 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
17 iblmbf 24837 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
185, 17syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1918, 4mbfdm2 24706 . . . . . 6 (𝜑𝐴 ∈ dom vol)
20 mblss 24600 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
2119, 20syl 17 . . . . 5 (𝜑𝐴 ⊆ ℝ)
22 rembl 24609 . . . . . 6 ℝ ∈ dom vol
2322a1i 11 . . . . 5 (𝜑 → ℝ ∈ dom vol)
24 elrege0 13115 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
251, 10, 24sylanbrc 582 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
26 0e0icopnf 13119 . . . . . . . 8 0 ∈ (0[,)+∞)
2726a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
2825, 27ifclda 4491 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
2928adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
30 eldifn 4058 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
3130adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
32 iffalse 4465 . . . . . 6 𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 0)
3331, 32syl 17 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
34 iftrue 4462 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3534mpteq2ia 5173 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
3635, 18eqeltrid 2843 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3721, 23, 29, 33, 36mbfss 24715 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
3828adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
3938fmpttd 6971 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
401, 10iblpos 24862 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
415, 40mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
4241simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
43 elrege0 13115 . . . . . . . 8 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
442, 11, 43sylanbrc 582 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ (0[,)+∞))
4544, 27ifclda 4491 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4645adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,)+∞))
4746fmpttd 6971 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)):ℝ⟶(0[,)+∞))
482, 11iblpos 24862 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)))
497, 48mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ))
5049simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) ∈ ℝ)
5137, 39, 42, 47, 50itg2addnc 35758 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))))
52 reex 10893 . . . . . . 7 ℝ ∈ V
5352a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
54 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
55 eqidd 2739 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
5653, 38, 46, 54, 55offval2 7531 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))))
57 iftrue 4462 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
5834, 57oveq12d 7273 . . . . . . . 8 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (𝐵 + 𝐶))
59 iftrue 4462 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = (𝐵 + 𝐶))
6058, 59eqtr4d 2781 . . . . . . 7 (𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
61 iffalse 4465 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
6232, 61oveq12d 7273 . . . . . . . . 9 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = (0 + 0))
63 00id 11080 . . . . . . . . 9 (0 + 0) = 0
6462, 63eqtrdi 2795 . . . . . . . 8 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = 0)
65 iffalse 4465 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, (𝐵 + 𝐶), 0) = 0)
6664, 65eqtr4d 2781 . . . . . . 7 𝑥𝐴 → (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0))
6760, 66pm2.61i 182 . . . . . 6 (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0)) = if(𝑥𝐴, (𝐵 + 𝐶), 0)
6867mpteq2i 5175 . . . . 5 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, 𝐵, 0) + if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))
6956, 68eqtrdi 2795 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0)))
7069fveq2d 6760 . . 3 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7116, 51, 703eqtr2d 2784 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐵 + 𝐶), 0))))
7213, 71eqtr4d 2781 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  f cof 7509  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  cle 10941  [,)cico 13010  volcvol 24532  MblFncmbf 24683  2citg2 24685  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739
This theorem is referenced by:  itgaddnclem2  35763
  Copyright terms: Public domain W3C validator