Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgabsnc Structured version   Visualization version   GIF version

Theorem itgabsnc 33810
Description: Choice-free analogue of itgabs 23820. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
itgabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgabsnc.m1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
itgabsnc.m2 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgabsnc (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgabsnc
StepHypRef Expression
1 itgabsnc.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 itgabsnc.2 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgcl 23769 . . . . . . . . . . 11 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
43cjcld 14143 . . . . . . . . . 10 (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5 iblmbf 23753 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
62, 5syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
76, 1mbfmptcl 23623 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 3115 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
9 nfv 1995 . . . . . . . . . . . . 13 𝑦 𝐵 ∈ ℂ
10 nfcsb1v 3698 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
1110nfel1 2928 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
12 csbeq1a 3691 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1312eleq1d 2835 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
149, 11, 13cbvral 3316 . . . . . . . . . . . 12 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
158, 14sylib 208 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
1615r19.21bi 3081 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
17 nfcv 2913 . . . . . . . . . . . 12 𝑦𝐵
1817, 10, 12cbvmpt 4884 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
1918, 2syl5eqelr 2855 . . . . . . . . . 10 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐵) ∈ 𝐿1)
20 itgabsnc.m2 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
214, 16, 19, 20iblmulc2nc 33806 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1)
224adantr 466 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
2322, 16mulcld 10265 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ ℂ)
2423iblcn 23784 . . . . . . . . 9 (𝜑 → ((𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1 ↔ ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)))
2521, 24mpbid 222 . . . . . . . 8 (𝜑 → ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1))
2625simpld 482 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
2722, 16absmuld 14400 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)))
2827mpteq2dva 4879 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
296, 1mbfdm2 23624 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom vol)
3022abscld 14382 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
3116abscld 14382 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘𝑦 / 𝑥𝐵) ∈ ℝ)
32 fconstmpt 5302 . . . . . . . . . . . 12 (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥)))
3332a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥))))
34 nfcv 2913 . . . . . . . . . . . . 13 𝑦(abs‘𝐵)
35 nfcv 2913 . . . . . . . . . . . . . 14 𝑥abs
3635, 10nffv 6341 . . . . . . . . . . . . 13 𝑥(abs‘𝑦 / 𝑥𝐵)
3712fveq2d 6337 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘𝑦 / 𝑥𝐵))
3834, 36, 37cbvmpt 4884 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵))
3938a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)))
4029, 30, 31, 33, 39offval2 7064 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
4128, 40eqtr4d 2808 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))))
42 itgabsnc.m1 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
434abscld 14382 . . . . . . . . . 10 (𝜑 → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
447abscld 14382 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4544recnd 10273 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
46 eqid 2771 . . . . . . . . . . 11 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵))
4745, 46fmptd 6529 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ)
4842, 43, 47mbfmulc2re 23634 . . . . . . . . 9 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
4941, 48eqeltrd 2850 . . . . . . . 8 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ MblFn)
5023, 21, 49iblabsnc 33805 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
5123recld 14141 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5223abscld 14382 . . . . . . 7 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5323releabsd 14397 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ≤ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)))
5426, 50, 51, 52, 53itgle 23795 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
553abscld 14382 . . . . . . . . 9 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
5655recnd 10273 . . . . . . . 8 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5756sqvald 13211 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)))
583absvalsqd 14388 . . . . . . . . . 10 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)))
593, 4mulcomd 10266 . . . . . . . . . 10 (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥))
6012, 17, 10cbvitg 23761 . . . . . . . . . . . 12 𝐴𝐵 d𝑥 = ∫𝐴𝑦 / 𝑥𝐵 d𝑦
6160oveq2i 6806 . . . . . . . . . . 11 ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦)
624, 16, 19, 20itgmulc2nc 33809 . . . . . . . . . . 11 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6361, 62syl5eq 2817 . . . . . . . . . 10 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6458, 59, 633eqtrd 2809 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6564fveq2d 6337 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦))
6655resqcld 13241 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ)
6766rered 14171 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2))
68 ovexd 6828 . . . . . . . . 9 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V)
6968, 21itgre 23786 . . . . . . . 8 (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7065, 67, 693eqtr3d 2813 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7157, 70eqtr3d 2807 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7237, 34, 36cbvitg 23761 . . . . . . . 8 𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦
7372oveq2i 6806 . . . . . . 7 ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦)
741, 2, 42iblabsnc 33805 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
7538, 74syl5eqelr 2855 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)) ∈ 𝐿1)
7655adantr 466 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
77 fconstmpt 5302 . . . . . . . . . . . 12 (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))
7877a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)))
7929, 76, 31, 78, 39offval2 7064 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))))
8042, 55, 47mbfmulc2re 23634 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
8179, 80eqeltrrd 2851 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))) ∈ MblFn)
8256, 31, 75, 81itgmulc2nc 33809 . . . . . . . 8 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
833adantr 466 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ)
8483abscjd 14396 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥))
8584oveq1d 6810 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8627, 85eqtrd 2805 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8786itgeq2dv 23767 . . . . . . . 8 (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
8882, 87eqtr4d 2808 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
8973, 88syl5eq 2817 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
9054, 71, 893brtr4d 4819 . . . . 5 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9190adantr 466 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9255adantr 466 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
9344, 74itgrecl 23783 . . . . . 6 (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
9493adantr 466 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
95 simpr 471 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥))
96 lemul2 11081 . . . . 5 (((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 < (abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9792, 94, 92, 95, 96syl112anc 1480 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9891, 97mpbird 247 . . 3 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
9998ex 397 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1007absge0d 14390 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
10174, 44, 100itgge0 23796 . . 3 (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥)
102 breq1 4790 . . 3 (0 = (abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
103101, 102syl5ibcom 235 . 2 (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1043absge0d 14390 . . 3 (𝜑 → 0 ≤ (abs‘∫𝐴𝐵 d𝑥))
105 0re 10245 . . . 4 0 ∈ ℝ
106 leloe 10329 . . . 4 ((0 ∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
107105, 55, 106sylancr 575 . . 3 (𝜑 → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
108104, 107mpbid 222 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))
10999, 103, 108mpjaod 849 1 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  csb 3682  {csn 4317   class class class wbr 4787  cmpt 4864   × cxp 5248  dom cdm 5250  cfv 6030  (class class class)co 6795  𝑓 cof 7045  cc 10139  cr 10140  0cc0 10141   · cmul 10146   < clt 10279  cle 10280  2c2 11275  cexp 13066  ccj 14043  cre 14044  cim 14045  abscabs 14181  volcvol 23450  MblFncmbf 23601  𝐿1cibl 23604  citg 23605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-ofr 7048  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-map 8014  df-pm 8015  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-n0 11499  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-rest 16290  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-bases 20970  df-cmp 21410  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608  df-ibl 23609  df-itg 23610  df-0p 23656
This theorem is referenced by:  ftc1cnnclem  33814  ftc2nc  33825
  Copyright terms: Public domain W3C validator