Proof of Theorem itgabsnc
Step | Hyp | Ref
| Expression |
1 | | itgabsnc.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
2 | | itgabsnc.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
3 | 1, 2 | itgcl 24681 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
4 | 3 | cjcld 14759 |
. . . . . . . . . 10
⊢ (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
5 | | iblmbf 24665 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
6 | 2, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
7 | 6, 1 | mbfmptcl 24533 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
8 | 7 | ralrimiva 3105 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
9 | | nfv 1922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝐵 ∈ ℂ |
10 | | nfcsb1v 3836 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
11 | 10 | nfel1 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ |
12 | | csbeq1a 3825 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
13 | 12 | eleq1d 2822 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ)) |
14 | 9, 11, 13 | cbvralw 3349 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
15 | 8, 14 | sylib 221 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
16 | 15 | r19.21bi 3130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
17 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐵 |
18 | 17, 10, 12 | cbvmpt 5156 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
19 | 18, 2 | eqeltrrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) ∈
𝐿1) |
20 | | itgabsnc.m2 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ MblFn) |
21 | 4, 16, 19, 20 | iblmulc2nc 35579 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
22 | 4 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
23 | 22, 16 | mulcld 10853 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ ℂ) |
24 | 23 | iblcn 24696 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ 𝐿1 ↔
((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1))) |
25 | 21, 24 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1)) |
26 | 25 | simpld 498 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
27 | 22, 16 | absmuld 15018 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
28 | 27 | mpteq2dva 5150 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) = (𝑦 ∈ 𝐴 ↦
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
29 | 6, 1 | mbfdm2 24534 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ dom vol) |
30 | 22 | abscld 15000 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ) |
31 | 16 | abscld 15000 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (abs‘⦋𝑦 / 𝑥⦌𝐵) ∈ ℝ) |
32 | | fconstmpt 5611 |
. . . . . . . . . . . 12
⊢ (𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦 ∈ 𝐴 ↦
(abs‘(∗‘∫𝐴𝐵 d𝑥))) |
33 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦 ∈ 𝐴 ↦
(abs‘(∗‘∫𝐴𝐵 d𝑥)))) |
34 | | nfcv 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(abs‘𝐵) |
35 | | nfcv 2904 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥abs |
36 | 35, 10 | nffv 6727 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(abs‘⦋𝑦 / 𝑥⦌𝐵) |
37 | 12 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘⦋𝑦 / 𝑥⦌𝐵)) |
38 | 34, 36, 37 | cbvmpt 5156 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) = (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵)) |
39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) = (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
40 | 29, 30, 31, 33, 39 | offval2 7488 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) = (𝑦 ∈ 𝐴 ↦
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
41 | 28, 40 | eqtr4d 2780 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) = ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)))) |
42 | | itgabsnc.m1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) |
43 | 4 | abscld 15000 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ) |
44 | 7 | abscld 15000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
45 | 44 | recnd 10861 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℂ) |
46 | 45 | fmpttd 6932 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ) |
47 | 42, 43, 46 | mbfmulc2re 24545 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) ∈ MblFn) |
48 | 41, 47 | eqeltrd 2838 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ MblFn) |
49 | 23, 21, 48 | iblabsnc 35578 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
50 | 23 | recld 14757 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
51 | 23 | abscld 15000 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
52 | 23 | releabsd 15015 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ≤
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) |
53 | 26, 49, 50, 51, 52 | itgle 24707 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
54 | 3 | abscld 15000 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
55 | 54 | recnd 10861 |
. . . . . . . 8
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
56 | 55 | sqvald 13713 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥))) |
57 | 3 | absvalsqd 15006 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥))) |
58 | 3, 4 | mulcomd 10854 |
. . . . . . . . . 10
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥)) |
59 | 12, 17, 10 | cbvitg 24673 |
. . . . . . . . . . . 12
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦 |
60 | 59 | oveq2i 7224 |
. . . . . . . . . . 11
⊢
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) |
61 | 4, 16, 19, 20 | itgmulc2nc 35582 |
. . . . . . . . . . 11
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
62 | 60, 61 | syl5eq 2790 |
. . . . . . . . . 10
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
63 | 57, 58, 62 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
64 | 63 | fveq2d 6721 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦)) |
65 | 54 | resqcld 13817 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ) |
66 | 65 | rered 14787 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2)) |
67 | | ovexd 7248 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ V) |
68 | 67, 21 | itgre 24698 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
69 | 64, 66, 68 | 3eqtr3d 2785 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
70 | 56, 69 | eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
71 | 37, 34, 36 | cbvitg 24673 |
. . . . . . . 8
⊢
∫𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦 |
72 | 71 | oveq2i 7224 |
. . . . . . 7
⊢
((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
73 | 1, 2, 42 | iblabsnc 35578 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
74 | 38, 73 | eqeltrrid 2843 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
75 | 54 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
76 | | fconstmpt 5611 |
. . . . . . . . . . . 12
⊢ (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦 ∈ 𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)) |
77 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦 ∈ 𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))) |
78 | 29, 75, 31, 77, 39 | offval2 7488 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘f · (𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) = (𝑦 ∈ 𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
79 | 42, 54, 46 | mbfmulc2re 24545 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘f · (𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) ∈ MblFn) |
80 | 78, 79 | eqeltrrd 2839 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) ∈ MblFn) |
81 | 55, 31, 74, 80 | itgmulc2nc 35582 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
82 | 3 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
83 | 82 | abscjd 15014 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥)) |
84 | 83 | oveq1d 7228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
85 | 27, 84 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
86 | 85 | itgeq2dv 24679 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
87 | 81, 86 | eqtr4d 2780 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
88 | 72, 87 | syl5eq 2790 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
89 | 53, 70, 88 | 3brtr4d 5085 |
. . . . 5
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
90 | 89 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
91 | 54 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
92 | 44, 73 | itgrecl 24695 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
93 | 92 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
94 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥)) |
95 | | lemul2 11685 |
. . . . 5
⊢
(((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
96 | 91, 93, 91, 94, 95 | syl112anc 1376 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
97 | 90, 96 | mpbird 260 |
. . 3
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |
98 | 97 | ex 416 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
99 | 7 | absge0d 15008 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
100 | 73, 44, 99 | itgge0 24708 |
. . 3
⊢ (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥) |
101 | | breq1 5056 |
. . 3
⊢ (0 =
(abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
102 | 100, 101 | syl5ibcom 248 |
. 2
⊢ (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
103 | 3 | absge0d 15008 |
. . 3
⊢ (𝜑 → 0 ≤
(abs‘∫𝐴𝐵 d𝑥)) |
104 | | 0re 10835 |
. . . 4
⊢ 0 ∈
ℝ |
105 | | leloe 10919 |
. . . 4
⊢ ((0
∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
106 | 104, 54, 105 | sylancr 590 |
. . 3
⊢ (𝜑 → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
107 | 103, 106 | mpbid 235 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))) |
108 | 98, 102, 107 | mpjaod 860 |
1
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |