Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgabsnc Structured version   Visualization version   GIF version

Theorem itgabsnc 35959
Description: Choice-free analogue of itgabs 25105. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
itgabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgabsnc.m1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
itgabsnc.m2 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgabsnc (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgabsnc
StepHypRef Expression
1 itgabsnc.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 itgabsnc.2 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgcl 25054 . . . . . . . . . . 11 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
43cjcld 15006 . . . . . . . . . 10 (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5 iblmbf 25038 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
62, 5syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
76, 1mbfmptcl 24906 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 3139 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
9 nfv 1916 . . . . . . . . . . . . 13 𝑦 𝐵 ∈ ℂ
10 nfcsb1v 3868 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
1110nfel1 2920 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
12 csbeq1a 3857 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1312eleq1d 2821 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
149, 11, 13cbvralw 3285 . . . . . . . . . . . 12 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
158, 14sylib 217 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
1615r19.21bi 3230 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
17 nfcv 2904 . . . . . . . . . . . 12 𝑦𝐵
1817, 10, 12cbvmpt 5203 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
1918, 2eqeltrrid 2842 . . . . . . . . . 10 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐵) ∈ 𝐿1)
20 itgabsnc.m2 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
214, 16, 19, 20iblmulc2nc 35955 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1)
224adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
2322, 16mulcld 11096 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ ℂ)
2423iblcn 25069 . . . . . . . . 9 (𝜑 → ((𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1 ↔ ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)))
2521, 24mpbid 231 . . . . . . . 8 (𝜑 → ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1))
2625simpld 495 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
2722, 16absmuld 15265 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)))
2827mpteq2dva 5192 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
296, 1mbfdm2 24907 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom vol)
3022abscld 15247 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
3116abscld 15247 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘𝑦 / 𝑥𝐵) ∈ ℝ)
32 fconstmpt 5680 . . . . . . . . . . . 12 (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥)))
3332a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥))))
34 nfcv 2904 . . . . . . . . . . . . 13 𝑦(abs‘𝐵)
35 nfcv 2904 . . . . . . . . . . . . . 14 𝑥abs
3635, 10nffv 6835 . . . . . . . . . . . . 13 𝑥(abs‘𝑦 / 𝑥𝐵)
3712fveq2d 6829 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘𝑦 / 𝑥𝐵))
3834, 36, 37cbvmpt 5203 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵))
3938a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)))
4029, 30, 31, 33, 39offval2 7615 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
4128, 40eqtr4d 2779 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥𝐴 ↦ (abs‘𝐵))))
42 itgabsnc.m1 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
434abscld 15247 . . . . . . . . . 10 (𝜑 → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
447abscld 15247 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4544recnd 11104 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
4645fmpttd 7045 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ)
4742, 43, 46mbfmulc2re 24918 . . . . . . . . 9 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘f · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
4841, 47eqeltrd 2837 . . . . . . . 8 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ MblFn)
4923, 21, 48iblabsnc 35954 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
5023recld 15004 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5123abscld 15247 . . . . . . 7 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5223releabsd 15262 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ≤ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)))
5326, 49, 50, 51, 52itgle 25080 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
543abscld 15247 . . . . . . . . 9 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
5554recnd 11104 . . . . . . . 8 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5655sqvald 13962 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)))
573absvalsqd 15253 . . . . . . . . . 10 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)))
583, 4mulcomd 11097 . . . . . . . . . 10 (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥))
5912, 17, 10cbvitg 25046 . . . . . . . . . . . 12 𝐴𝐵 d𝑥 = ∫𝐴𝑦 / 𝑥𝐵 d𝑦
6059oveq2i 7348 . . . . . . . . . . 11 ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦)
614, 16, 19, 20itgmulc2nc 35958 . . . . . . . . . . 11 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6260, 61eqtrid 2788 . . . . . . . . . 10 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6357, 58, 623eqtrd 2780 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6463fveq2d 6829 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦))
6554resqcld 14066 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ)
6665rered 15034 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2))
67 ovexd 7372 . . . . . . . . 9 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V)
6867, 21itgre 25071 . . . . . . . 8 (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
6964, 66, 683eqtr3d 2784 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7056, 69eqtr3d 2778 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7137, 34, 36cbvitg 25046 . . . . . . . 8 𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦
7271oveq2i 7348 . . . . . . 7 ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦)
731, 2, 42iblabsnc 35954 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
7438, 73eqeltrrid 2842 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)) ∈ 𝐿1)
7554adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
76 fconstmpt 5680 . . . . . . . . . . . 12 (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))
7776a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)))
7829, 75, 31, 77, 39offval2 7615 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘f · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))))
7942, 54, 46mbfmulc2re 24918 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘f · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
8078, 79eqeltrrd 2838 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))) ∈ MblFn)
8155, 31, 74, 80itgmulc2nc 35958 . . . . . . . 8 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
823adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ)
8382abscjd 15261 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥))
8483oveq1d 7352 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8527, 84eqtrd 2776 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8685itgeq2dv 25052 . . . . . . . 8 (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
8781, 86eqtr4d 2779 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
8872, 87eqtrid 2788 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
8953, 70, 883brtr4d 5124 . . . . 5 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9089adantr 481 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9154adantr 481 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
9244, 73itgrecl 25068 . . . . . 6 (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
9392adantr 481 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
94 simpr 485 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥))
95 lemul2 11929 . . . . 5 (((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 < (abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9691, 93, 91, 94, 95syl112anc 1373 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9790, 96mpbird 256 . . 3 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
9897ex 413 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
997absge0d 15255 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
10073, 44, 99itgge0 25081 . . 3 (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥)
101 breq1 5095 . . 3 (0 = (abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
102100, 101syl5ibcom 244 . 2 (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1033absge0d 15255 . . 3 (𝜑 → 0 ≤ (abs‘∫𝐴𝐵 d𝑥))
104 0re 11078 . . . 4 0 ∈ ℝ
105 leloe 11162 . . . 4 ((0 ∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
106104, 54, 105sylancr 587 . . 3 (𝜑 → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
107103, 106mpbid 231 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))
10898, 102, 107mpjaod 857 1 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  csb 3843  {csn 4573   class class class wbr 5092  cmpt 5175   × cxp 5618  dom cdm 5620  cfv 6479  (class class class)co 7337  f cof 7593  cc 10970  cr 10971  0cc0 10972   · cmul 10977   < clt 11110  cle 11111  2c2 12129  cexp 13883  ccj 14906  cre 14907  cim 14908  abscabs 15044  volcvol 24733  MblFncmbf 24884  𝐿1cibl 24887  citg 24888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-disj 5058  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-ofr 7596  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-n0 12335  df-z 12421  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-sum 15497  df-rest 17230  df-topgen 17251  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-top 22149  df-topon 22166  df-bases 22202  df-cmp 22644  df-ovol 24734  df-vol 24735  df-mbf 24889  df-itg1 24890  df-itg2 24891  df-ibl 24892  df-itg 24893  df-0p 24940
This theorem is referenced by:  ftc1cnnclem  35961  ftc2nc  35972
  Copyright terms: Public domain W3C validator