MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itggt0 Structured version   Visualization version   GIF version

Theorem itggt0 24160
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itggt0.1 (𝜑 → 0 < (vol‘𝐴))
itggt0.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itggt0.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ+)
Assertion
Ref Expression
itggt0 (𝜑 → 0 < ∫𝐴𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itggt0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itggt0.2 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24086 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itggt0.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ+)
53, 4mbfdm2 23956 . . 3 (𝜑𝐴 ∈ dom vol)
6 itggt0.1 . . 3 (𝜑 → 0 < (vol‘𝐴))
74rpred 12254 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
84rpge0d 12258 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
9 elrege0 12664 . . . . . . 7 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
107, 8, 9sylanbrc 575 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
11 0e0icopnf 12668 . . . . . . 7 0 ∈ (0[,)+∞)
1211a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
1310, 12ifclda 4387 . . . . 5 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
1413adantr 473 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
1514fmpttd 6708 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
16 mblss 23850 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
175, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 23859 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2013adantr 473 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
21 eldifn 3996 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 474 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4364 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
24 iftrue 4359 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
2524mpteq2ia 5023 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
2625, 3syl5eqel 2872 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
2717, 19, 20, 23, 26mbfss 23965 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
284rpgt0d 12257 . . . . . . 7 ((𝜑𝑥𝐴) → 0 < 𝐵)
2917sselda 3860 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3024adantl 474 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3130, 4eqeltrd 2868 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ+)
32 eqid 2780 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
3332fvmpt2 6611 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = if(𝑥𝐴, 𝐵, 0))
3429, 31, 33syl2anc 576 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = if(𝑥𝐴, 𝐵, 0))
3534, 30eqtrd 2816 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = 𝐵)
3628, 35breqtrrd 4962 . . . . . 6 ((𝜑𝑥𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
3736ralrimiva 3134 . . . . 5 (𝜑 → ∀𝑥𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
38 nfcv 2934 . . . . . . 7 𝑥0
39 nfcv 2934 . . . . . . 7 𝑥 <
40 nffvmpt1 6515 . . . . . . 7 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦)
4138, 39, 40nfbr 4981 . . . . . 6 𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦)
42 nfv 1874 . . . . . 6 𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥)
43 fveq2 6504 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
4443breq2d 4946 . . . . . 6 (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥)))
4541, 42, 44cbvral 3381 . . . . 5 (∀𝑦𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
4637, 45sylibr 226 . . . 4 (𝜑 → ∀𝑦𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦))
4746r19.21bi 3160 . . 3 ((𝜑𝑦𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦))
485, 6, 15, 27, 47itg2gt0 24079 . 2 (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
497, 1, 8itgposval 24114 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5048, 49breqtrrd 4962 1 (𝜑 → 0 < ∫𝐴𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1508  wcel 2051  wral 3090  cdif 3828  wss 3831  ifcif 4353   class class class wbr 4934  cmpt 5013  dom cdm 5411  cfv 6193  (class class class)co 6982  cr 10340  0cc0 10341  +∞cpnf 10477   < clt 10480  cle 10481  +crp 12210  [,)cico 12562  volcvol 23782  MblFncmbf 23933  2citg2 23935  𝐿1cibl 23936  citg 23937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cc 9661  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-ofr 7234  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-n0 11714  df-z 11800  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-clim 14712  df-rlim 14713  df-sum 14910  df-rest 16558  df-topgen 16579  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-top 21221  df-topon 21238  df-bases 21273  df-cmp 21714  df-cncf 23204  df-ovol 23783  df-vol 23784  df-mbf 23938  df-itg1 23939  df-itg2 23940  df-ibl 23941  df-itg 23942  df-0p 23989
This theorem is referenced by:  ftc1lem4  24354  fdvposlt  31550
  Copyright terms: Public domain W3C validator