![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itggt0 | Structured version Visualization version GIF version |
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
Ref | Expression |
---|---|
itggt0.1 | ⊢ (𝜑 → 0 < (vol‘𝐴)) |
itggt0.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
itggt0.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
itggt0 | ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itggt0.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
2 | iblmbf 25822 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | itggt0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) | |
5 | 3, 4 | mbfdm2 25691 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
6 | itggt0.1 | . . 3 ⊢ (𝜑 → 0 < (vol‘𝐴)) | |
7 | 4 | rpred 13099 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
8 | 4 | rpge0d 13103 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
9 | elrege0 13514 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
10 | 7, 8, 9 | sylanbrc 582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
11 | 0e0icopnf 13518 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
13 | 10, 12 | ifclda 4583 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
15 | 14 | fmpttd 7149 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
16 | mblss 25585 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
18 | rembl 25594 | . . . . 5 ⊢ ℝ ∈ dom vol | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ dom vol) |
20 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
21 | eldifn 4155 | . . . . . 6 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
23 | 22 | iffalsed 4559 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
24 | iftrue 4554 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) | |
25 | 24 | mpteq2ia 5269 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
26 | 25, 3 | eqeltrid 2848 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
27 | 17, 19, 20, 23, 26 | mbfss 25700 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
28 | 4 | rpgt0d 13102 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < 𝐵) |
29 | 17 | sselda 4008 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
30 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
31 | 30, 4 | eqeltrd 2844 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) |
32 | eqid 2740 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) | |
33 | 32 | fvmpt2 7040 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
34 | 29, 31, 33 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
35 | 34, 30 | eqtrd 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = 𝐵) |
36 | 28, 35 | breqtrrd 5194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
37 | 36 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
38 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
39 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
40 | nffvmpt1 6931 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) | |
41 | 38, 39, 40 | nfbr 5213 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) |
42 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) | |
43 | fveq2 6920 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) | |
44 | 43 | breq2d 5178 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥))) |
45 | 41, 42, 44 | cbvralw 3312 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
46 | 37, 45 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
47 | 46 | r19.21bi 3257 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
48 | 5, 6, 15, 27, 47 | itg2gt0 25815 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
49 | 7, 1, 8 | itgposval 25851 | . 2 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
50 | 48, 49 | breqtrrd 5194 | 1 ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 < clt 11324 ≤ cle 11325 ℝ+crp 13057 [,)cico 13409 volcvol 25517 MblFncmbf 25668 ∫2citg2 25670 𝐿1cibl 25671 ∫citg 25672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-rest 17482 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cmp 23416 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 |
This theorem is referenced by: ftc1lem4 26100 fdvposlt 34576 |
Copyright terms: Public domain | W3C validator |