MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itggt0 Structured version   Visualization version   GIF version

Theorem itggt0 25290
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itggt0.1 (𝜑 → 0 < (vol‘𝐴))
itggt0.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itggt0.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ+)
Assertion
Ref Expression
itggt0 (𝜑 → 0 < ∫𝐴𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itggt0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itggt0.2 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25214 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itggt0.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ+)
53, 4mbfdm2 25083 . . 3 (𝜑𝐴 ∈ dom vol)
6 itggt0.1 . . 3 (𝜑 → 0 < (vol‘𝐴))
74rpred 12998 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
84rpge0d 13002 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
9 elrege0 13413 . . . . . . 7 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
107, 8, 9sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
11 0e0icopnf 13417 . . . . . . 7 0 ∈ (0[,)+∞)
1211a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
1310, 12ifclda 4557 . . . . 5 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
1413adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
1514fmpttd 7099 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
16 mblss 24977 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
175, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 24986 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2013adantr 481 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
21 eldifn 4123 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 482 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4533 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, 𝐵, 0) = 0)
24 iftrue 4528 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐵, 0) = 𝐵)
2524mpteq2ia 5244 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥𝐴𝐵)
2625, 3eqeltrid 2836 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
2717, 19, 20, 23, 26mbfss 25092 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ MblFn)
284rpgt0d 13001 . . . . . . 7 ((𝜑𝑥𝐴) → 0 < 𝐵)
2917sselda 3978 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3024adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
3130, 4eqeltrd 2832 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ+)
32 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
3332fvmpt2 6995 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = if(𝑥𝐴, 𝐵, 0))
3429, 31, 33syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = if(𝑥𝐴, 𝐵, 0))
3534, 30eqtrd 2771 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥) = 𝐵)
3628, 35breqtrrd 5169 . . . . . 6 ((𝜑𝑥𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
3736ralrimiva 3145 . . . . 5 (𝜑 → ∀𝑥𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
38 nfcv 2902 . . . . . . 7 𝑥0
39 nfcv 2902 . . . . . . 7 𝑥 <
40 nffvmpt1 6889 . . . . . . 7 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦)
4138, 39, 40nfbr 5188 . . . . . 6 𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦)
42 nfv 1917 . . . . . 6 𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥)
43 fveq2 6878 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
4443breq2d 5153 . . . . . 6 (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥)))
4541, 42, 44cbvralw 3302 . . . . 5 (∀𝑦𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑥))
4637, 45sylibr 233 . . . 4 (𝜑 → ∀𝑦𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦))
4746r19.21bi 3247 . . 3 ((𝜑𝑦𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))‘𝑦))
485, 6, 15, 27, 47itg2gt0 25207 . 2 (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
497, 1, 8itgposval 25242 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5048, 49breqtrrd 5169 1 (𝜑 → 0 < ∫𝐴𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3060  cdif 3941  wss 3944  ifcif 4522   class class class wbr 5141  cmpt 5224  dom cdm 5669  cfv 6532  (class class class)co 7393  cr 11091  0cc0 11092  +∞cpnf 11227   < clt 11230  cle 11231  +crp 12956  [,)cico 13308  volcvol 24909  MblFncmbf 25060  2citg2 25062  𝐿1cibl 25063  citg 25064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cc 10412  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-ofr 7654  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-rlim 15415  df-sum 15615  df-rest 17350  df-topgen 17371  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-top 22325  df-topon 22342  df-bases 22378  df-cmp 22820  df-cncf 24323  df-ovol 24910  df-vol 24911  df-mbf 25065  df-itg1 25066  df-itg2 25067  df-ibl 25068  df-itg 25069  df-0p 25116
This theorem is referenced by:  ftc1lem4  25485  fdvposlt  33440
  Copyright terms: Public domain W3C validator