| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itggt0 | Structured version Visualization version GIF version | ||
| Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| Ref | Expression |
|---|---|
| itggt0.1 | ⊢ (𝜑 → 0 < (vol‘𝐴)) |
| itggt0.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| itggt0.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| itggt0 | ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itggt0.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 2 | iblmbf 25720 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 4 | itggt0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) | |
| 5 | 3, 4 | mbfdm2 25590 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 6 | itggt0.1 | . . 3 ⊢ (𝜑 → 0 < (vol‘𝐴)) | |
| 7 | 4 | rpred 13051 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | 4 | rpge0d 13055 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
| 9 | elrege0 13471 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 10 | 7, 8, 9 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 11 | 0e0icopnf 13475 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
| 13 | 10, 12 | ifclda 4536 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 15 | 14 | fmpttd 7105 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
| 16 | mblss 25484 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 18 | rembl 25493 | . . . . 5 ⊢ ℝ ∈ dom vol | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ dom vol) |
| 20 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 21 | eldifn 4107 | . . . . . 6 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 23 | 22 | iffalsed 4511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
| 24 | iftrue 4506 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) | |
| 25 | 24 | mpteq2ia 5216 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 26 | 25, 3 | eqeltrid 2838 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
| 27 | 17, 19, 20, 23, 26 | mbfss 25599 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
| 28 | 4 | rpgt0d 13054 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < 𝐵) |
| 29 | 17 | sselda 3958 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 30 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 31 | 30, 4 | eqeltrd 2834 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) |
| 32 | eqid 2735 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) | |
| 33 | 32 | fvmpt2 6997 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 34 | 29, 31, 33 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 35 | 34, 30 | eqtrd 2770 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = 𝐵) |
| 36 | 28, 35 | breqtrrd 5147 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 37 | 36 | ralrimiva 3132 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 38 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
| 39 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 40 | nffvmpt1 6887 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) | |
| 41 | 38, 39, 40 | nfbr 5166 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) |
| 42 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) | |
| 43 | fveq2 6876 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) | |
| 44 | 43 | breq2d 5131 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥))) |
| 45 | 41, 42, 44 | cbvralw 3286 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 46 | 37, 45 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
| 47 | 46 | r19.21bi 3234 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
| 48 | 5, 6, 15, 27, 47 | itg2gt0 25713 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 49 | 7, 1, 8 | itgposval 25749 | . 2 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 50 | 48, 49 | breqtrrd 5147 | 1 ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 ⊆ wss 3926 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 +∞cpnf 11266 < clt 11269 ≤ cle 11270 ℝ+crp 13008 [,)cico 13364 volcvol 25416 MblFncmbf 25567 ∫2citg2 25569 𝐿1cibl 25570 ∫citg 25571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-cncf 24822 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-ibl 25575 df-itg 25576 df-0p 25623 |
| This theorem is referenced by: ftc1lem4 25998 fdvposlt 34631 |
| Copyright terms: Public domain | W3C validator |