Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itggt0 | Structured version Visualization version GIF version |
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
Ref | Expression |
---|---|
itggt0.1 | ⊢ (𝜑 → 0 < (vol‘𝐴)) |
itggt0.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
itggt0.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
itggt0 | ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itggt0.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
2 | iblmbf 24837 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | itggt0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) | |
5 | 3, 4 | mbfdm2 24706 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
6 | itggt0.1 | . . 3 ⊢ (𝜑 → 0 < (vol‘𝐴)) | |
7 | 4 | rpred 12701 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
8 | 4 | rpge0d 12705 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
9 | elrege0 13115 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
10 | 7, 8, 9 | sylanbrc 582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
11 | 0e0icopnf 13119 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
13 | 10, 12 | ifclda 4491 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
15 | 14 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
16 | mblss 24600 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
18 | rembl 24609 | . . . . 5 ⊢ ℝ ∈ dom vol | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ dom vol) |
20 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
21 | eldifn 4058 | . . . . . 6 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
23 | 22 | iffalsed 4467 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
24 | iftrue 4462 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) | |
25 | 24 | mpteq2ia 5173 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
26 | 25, 3 | eqeltrid 2843 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
27 | 17, 19, 20, 23, 26 | mbfss 24715 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
28 | 4 | rpgt0d 12704 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < 𝐵) |
29 | 17 | sselda 3917 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
30 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
31 | 30, 4 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) |
32 | eqid 2738 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) | |
33 | 32 | fvmpt2 6868 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
34 | 29, 31, 33 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
35 | 34, 30 | eqtrd 2778 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = 𝐵) |
36 | 28, 35 | breqtrrd 5098 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
37 | 36 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
38 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
39 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
40 | nffvmpt1 6767 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) | |
41 | 38, 39, 40 | nfbr 5117 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) |
42 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) | |
43 | fveq2 6756 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) | |
44 | 43 | breq2d 5082 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥))) |
45 | 41, 42, 44 | cbvralw 3363 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
46 | 37, 45 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
47 | 46 | r19.21bi 3132 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
48 | 5, 6, 15, 27, 47 | itg2gt0 24830 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
49 | 7, 1, 8 | itgposval 24865 | . 2 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
50 | 48, 49 | breqtrrd 5098 | 1 ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ⊆ wss 3883 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 < clt 10940 ≤ cle 10941 ℝ+crp 12659 [,)cico 13010 volcvol 24532 MblFncmbf 24683 ∫2citg2 24685 𝐿1cibl 24686 ∫citg 24687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 |
This theorem is referenced by: ftc1lem4 25108 fdvposlt 32479 |
Copyright terms: Public domain | W3C validator |