| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itggt0 | Structured version Visualization version GIF version | ||
| Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.) |
| Ref | Expression |
|---|---|
| itggt0.1 | ⊢ (𝜑 → 0 < (vol‘𝐴)) |
| itggt0.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| itggt0.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| itggt0 | ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itggt0.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 2 | iblmbf 25668 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 4 | itggt0.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ+) | |
| 5 | 3, 4 | mbfdm2 25538 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 6 | itggt0.1 | . . 3 ⊢ (𝜑 → 0 < (vol‘𝐴)) | |
| 7 | 4 | rpred 12995 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | 4 | rpge0d 12999 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
| 9 | elrege0 13415 | . . . . . . 7 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 10 | 7, 8, 9 | sylanbrc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 11 | 0e0icopnf 13419 | . . . . . . 7 ⊢ 0 ∈ (0[,)+∞) | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
| 13 | 10, 12 | ifclda 4524 | . . . . 5 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 15 | 14 | fmpttd 7087 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
| 16 | mblss 25432 | . . . . 5 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 17 | 5, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 18 | rembl 25441 | . . . . 5 ⊢ ℝ ∈ dom vol | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ dom vol) |
| 20 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 21 | eldifn 4095 | . . . . . 6 ⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 23 | 22 | iffalsed 4499 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 0) |
| 24 | iftrue 4494 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) | |
| 25 | 24 | mpteq2ia 5202 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 26 | 25, 3 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
| 27 | 17, 19, 20, 23, 26 | mbfss 25547 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ∈ MblFn) |
| 28 | 4 | rpgt0d 12998 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < 𝐵) |
| 29 | 17 | sselda 3946 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 30 | 24 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 31 | 30, 4 | eqeltrd 2828 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) |
| 32 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) | |
| 33 | 32 | fvmpt2 6979 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 34 | 29, 31, 33 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 35 | 34, 30 | eqtrd 2764 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) = 𝐵) |
| 36 | 28, 35 | breqtrrd 5135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 37 | 36 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 38 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥0 | |
| 39 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 40 | nffvmpt1 6869 | . . . . . . 7 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) | |
| 41 | 38, 39, 40 | nfbr 5154 | . . . . . 6 ⊢ Ⅎ𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) |
| 42 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥) | |
| 43 | fveq2 6858 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) | |
| 44 | 43 | breq2d 5119 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥))) |
| 45 | 41, 42, 44 | cbvralw 3280 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑥)) |
| 46 | 37, 45 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
| 47 | 46 | r19.21bi 3229 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))‘𝑦)) |
| 48 | 5, 6, 15, 27, 47 | itg2gt0 25661 | . 2 ⊢ (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 49 | 7, 1, 8 | itgposval 25697 | . 2 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 50 | 48, 49 | breqtrrd 5135 | 1 ⊢ (𝜑 → 0 < ∫𝐴𝐵 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 < clt 11208 ≤ cle 11209 ℝ+crp 12951 [,)cico 13308 volcvol 25364 MblFncmbf 25515 ∫2citg2 25517 𝐿1cibl 25518 ∫citg 25519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-cncf 24771 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-ibl 25523 df-itg 25524 df-0p 25571 |
| This theorem is referenced by: ftc1lem4 25946 fdvposlt 34590 |
| Copyright terms: Public domain | W3C validator |