MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss3 Structured version   Visualization version   GIF version

Theorem itgss3 25786
Description: Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgss3.1 (𝜑𝐴𝐵)
itgss3.2 (𝜑𝐵 ⊆ ℝ)
itgss3.3 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
itgss3.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgss3 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2897 . . . . . 6 𝑦if(𝑥𝐴, 𝐶, 0)
2 nfv 1913 . . . . . . 7 𝑥 𝑦𝐴
3 nfcsb1v 3903 . . . . . . 7 𝑥𝑦 / 𝑥𝐶
4 nfcv 2897 . . . . . . 7 𝑥0
52, 3, 4nfif 4536 . . . . . 6 𝑥if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)
6 eleq1w 2816 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
7 csbeq1a 3893 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7ifbieq1d 4530 . . . . . 6 (𝑥 = 𝑦 → if(𝑥𝐴, 𝐶, 0) = if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
91, 5, 8cbvmpt 5233 . . . . 5 (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
10 itgss3.1 . . . . . . 7 (𝜑𝐴𝐵)
1110adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴𝐵)
12 nfcv 2897 . . . . . . . . . . . 12 𝑦𝐶
1312, 3, 7cbvmpt 5233 . . . . . . . . . . 11 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
14 iftrue 4511 . . . . . . . . . . . 12 (𝑦𝐴 → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 𝑦 / 𝑥𝐶)
1514mpteq2ia 5225 . . . . . . . . . . 11 (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) = (𝑦𝐴𝑦 / 𝑥𝐶)
1613, 15eqtr4i 2760 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
17 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
1816, 17eqeltrrid 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
19 iblmbf 25738 . . . . . . . . 9 ((𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2110sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐵)
22 itgss3.4 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2321, 22syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
2423fmpttd 7115 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℂ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶):𝐴⟶ℂ)
2616feq1i 6707 . . . . . . . . . 10 ((𝑥𝐴𝐶):𝐴⟶ℂ ↔ (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
2725, 26sylib 218 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
2827fvmptelcdm 7113 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦𝐴) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
2920, 28mbfdm2 25608 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴 ∈ dom vol)
30 undif 4462 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3110, 30sylib 218 . . . . . . . . 9 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3231adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
33 id 22 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
34 itgss3.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
3534ssdifssd 4127 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ⊆ ℝ)
36 itgss3.3 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
37 nulmbl 25506 . . . . . . . . . 10 (((𝐵𝐴) ⊆ ℝ ∧ (vol*‘(𝐵𝐴)) = 0) → (𝐵𝐴) ∈ dom vol)
3835, 36, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ dom vol)
39 unmbl 25508 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4033, 38, 39syl2anr 597 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4132, 40eqeltrrd 2834 . . . . . . 7 ((𝜑𝐴 ∈ dom vol) → 𝐵 ∈ dom vol)
4229, 41syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐵 ∈ dom vol)
43 eldifn 4112 . . . . . . . 8 (𝑦 ∈ (𝐵𝐴) → ¬ 𝑦𝐴)
4443adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → ¬ 𝑦𝐴)
4544iffalsed 4516 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 0)
4611, 42, 28, 45, 18iblss2 25777 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
479, 46eqeltrid 2837 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
48 iftrue 4511 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
4948mpteq2ia 5225 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
501, 5, 8cbvmpt 5233 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5149, 50eqtr3i 2759 . . . . 5 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5210adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴𝐵)
53 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
549, 53eqeltrrid 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
55 iblmbf 25738 . . . . . . . . 9 ((𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
5654, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
57 0cn 11235 . . . . . . . . . . . . 13 0 ∈ ℂ
58 ifcl 4551 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
5922, 57, 58sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
6059fmpttd 7115 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ)
619feq1i 6707 . . . . . . . . . . 11 ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ ↔ (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6260, 61sylib 218 . . . . . . . . . 10 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6362adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6463fvmptelcdm 7113 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) ∧ 𝑦𝐵) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
6556, 64mbfdm2 25608 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐵 ∈ dom vol)
66 dfss4 4249 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
6710, 66sylib 218 . . . . . . . . 9 (𝜑 → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
6867adantr 480 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
69 id 22 . . . . . . . . 9 (𝐵 ∈ dom vol → 𝐵 ∈ dom vol)
70 difmbl 25514 . . . . . . . . 9 ((𝐵 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7169, 38, 70syl2anr 597 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7268, 71eqeltrrd 2834 . . . . . . 7 ((𝜑𝐵 ∈ dom vol) → 𝐴 ∈ dom vol)
7365, 72syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴 ∈ dom vol)
7452, 73, 64, 54iblss 25776 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
7551, 74eqeltrid 2837 . . . 4 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
7647, 75impbida 800 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1))
7767eleq2d 2819 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑥𝐴))
7877biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → 𝑥𝐴)
7978, 48syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
8059, 22, 35, 36, 79itgeqa 25785 . . . 4 (𝜑 → (((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥))
8180simpld 494 . . 3 (𝜑 → ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
8276, 81bitrd 279 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
83 itgss2 25784 . . . 4 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
8410, 83syl 17 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
8580simprd 495 . . 3 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥)
8684, 85eqtrd 2769 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
8782, 86jca 511 1 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  csb 3879  cdif 3928  cun 3929  wss 3931  ifcif 4505  cmpt 5205  dom cdm 5665  wf 6537  cfv 6541  cc 11135  cr 11136  0cc0 11137  vol*covol 25433  volcvol 25434  MblFncmbf 25585  𝐿1cibl 25588  citg 25589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-sum 15705  df-rest 17438  df-topgen 17459  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-top 22848  df-topon 22865  df-bases 22900  df-cmp 23341  df-ovol 25435  df-vol 25436  df-mbf 25590  df-itg1 25591  df-itg2 25592  df-ibl 25593  df-itg 25594
This theorem is referenced by:  itgioo  25787  itgsplitioo  25809  itgvol0  45940  ibliooicc  45943
  Copyright terms: Public domain W3C validator