Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss3 Structured version   Visualization version   GIF version

Theorem itgss3 23872
 Description: Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgss3.1 (𝜑𝐴𝐵)
itgss3.2 (𝜑𝐵 ⊆ ℝ)
itgss3.3 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
itgss3.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgss3 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . . 6 𝑦if(𝑥𝐴, 𝐶, 0)
2 nfv 2009 . . . . . . 7 𝑥 𝑦𝐴
3 nfcsb1v 3707 . . . . . . 7 𝑥𝑦 / 𝑥𝐶
4 nfcv 2907 . . . . . . 7 𝑥0
52, 3, 4nfif 4272 . . . . . 6 𝑥if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)
6 eleq1w 2827 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
7 csbeq1a 3700 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7ifbieq1d 4266 . . . . . 6 (𝑥 = 𝑦 → if(𝑥𝐴, 𝐶, 0) = if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
91, 5, 8cbvmpt 4908 . . . . 5 (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
10 itgss3.1 . . . . . . 7 (𝜑𝐴𝐵)
1110adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴𝐵)
12 nfcv 2907 . . . . . . . . . . . 12 𝑦𝐶
1312, 3, 7cbvmpt 4908 . . . . . . . . . . 11 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
14 iftrue 4249 . . . . . . . . . . . 12 (𝑦𝐴 → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 𝑦 / 𝑥𝐶)
1514mpteq2ia 4899 . . . . . . . . . . 11 (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) = (𝑦𝐴𝑦 / 𝑥𝐶)
1613, 15eqtr4i 2790 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
17 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
1816, 17syl5eqelr 2849 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
19 iblmbf 23825 . . . . . . . . 9 ((𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2110sselda 3761 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥𝐵)
22 itgss3.4 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2321, 22syldan 585 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
2423fmpttd 6575 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℂ)
2524adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶):𝐴⟶ℂ)
2616feq1i 6214 . . . . . . . . . . 11 ((𝑥𝐴𝐶):𝐴⟶ℂ ↔ (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
2725, 26sylib 209 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
28 eqid 2765 . . . . . . . . . . 11 (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
2928fmpt 6570 . . . . . . . . . 10 (∀𝑦𝐴 if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ ↔ (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
3027, 29sylibr 225 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → ∀𝑦𝐴 if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
3130r19.21bi 3079 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦𝐴) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
3220, 31mbfdm2 23695 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴 ∈ dom vol)
33 undif 4209 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3410, 33sylib 209 . . . . . . . . 9 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3534adantr 472 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
36 id 22 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
37 itgss3.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
3837ssdifssd 3910 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ⊆ ℝ)
39 itgss3.3 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
40 nulmbl 23593 . . . . . . . . . 10 (((𝐵𝐴) ⊆ ℝ ∧ (vol*‘(𝐵𝐴)) = 0) → (𝐵𝐴) ∈ dom vol)
4138, 39, 40syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ dom vol)
42 unmbl 23595 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4336, 41, 42syl2anr 590 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4435, 43eqeltrrd 2845 . . . . . . 7 ((𝜑𝐴 ∈ dom vol) → 𝐵 ∈ dom vol)
4532, 44syldan 585 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐵 ∈ dom vol)
46 eldifn 3895 . . . . . . . 8 (𝑦 ∈ (𝐵𝐴) → ¬ 𝑦𝐴)
4746adantl 473 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → ¬ 𝑦𝐴)
4847iffalsed 4254 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 0)
4911, 45, 31, 48, 18iblss2 23863 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
509, 49syl5eqel 2848 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
51 iftrue 4249 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
5251mpteq2ia 4899 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
531, 5, 8cbvmpt 4908 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5452, 53eqtr3i 2789 . . . . 5 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5510adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴𝐵)
56 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
579, 56syl5eqelr 2849 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
58 iblmbf 23825 . . . . . . . . 9 ((𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
5957, 58syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
60 0cn 10285 . . . . . . . . . . . . . 14 0 ∈ ℂ
61 ifcl 4287 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
6222, 60, 61sylancl 580 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
6362fmpttd 6575 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ)
649feq1i 6214 . . . . . . . . . . . 12 ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ ↔ (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6563, 64sylib 209 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6665adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
67 eqid 2765 . . . . . . . . . . 11 (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) = (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
6867fmpt 6570 . . . . . . . . . 10 (∀𝑦𝐵 if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ ↔ (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6966, 68sylibr 225 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → ∀𝑦𝐵 if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
7069r19.21bi 3079 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) ∧ 𝑦𝐵) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
7159, 70mbfdm2 23695 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐵 ∈ dom vol)
72 dfss4 4023 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
7310, 72sylib 209 . . . . . . . . 9 (𝜑 → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
7473adantr 472 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
75 id 22 . . . . . . . . 9 (𝐵 ∈ dom vol → 𝐵 ∈ dom vol)
76 difmbl 23601 . . . . . . . . 9 ((𝐵 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7775, 41, 76syl2anr 590 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7874, 77eqeltrrd 2845 . . . . . . 7 ((𝜑𝐵 ∈ dom vol) → 𝐴 ∈ dom vol)
7971, 78syldan 585 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴 ∈ dom vol)
8055, 79, 70, 57iblss 23862 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
8154, 80syl5eqel 2848 . . . 4 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
8250, 81impbida 835 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1))
8373eleq2d 2830 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑥𝐴))
8483biimpa 468 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → 𝑥𝐴)
8584, 51syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
8662, 22, 38, 39, 85itgeqa 23871 . . . 4 (𝜑 → (((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥))
8786simpld 488 . . 3 (𝜑 → ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
8882, 87bitrd 270 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
89 itgss2 23870 . . . 4 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
9010, 89syl 17 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
9186simprd 489 . . 3 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥)
9290, 91eqtrd 2799 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
9388, 92jca 507 1 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 197   ∧ wa 384   = wceq 1652   ∈ wcel 2155  ∀wral 3055  ⦋csb 3691   ∖ cdif 3729   ∪ cun 3730   ⊆ wss 3732  ifcif 4243   ↦ cmpt 4888  dom cdm 5277  ⟶wf 6064  ‘cfv 6068  ℂcc 10187  ℝcr 10188  0cc0 10189  vol*covol 23520  volcvol 23521  MblFncmbf 23672  𝐿1cibl 23675  ∫citg 23676 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-symdif 4005  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-rest 16349  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-itg 23681 This theorem is referenced by:  itgioo  23873  itgsplitioo  23895  itgvol0  40821  ibliooicc  40824
 Copyright terms: Public domain W3C validator