MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss3 Structured version   Visualization version   GIF version

Theorem itgss3 25749
Description: Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgss3.1 (𝜑𝐴𝐵)
itgss3.2 (𝜑𝐵 ⊆ ℝ)
itgss3.3 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
itgss3.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
itgss3 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgss3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . 6 𝑦if(𝑥𝐴, 𝐶, 0)
2 nfv 1914 . . . . . . 7 𝑥 𝑦𝐴
3 nfcsb1v 3883 . . . . . . 7 𝑥𝑦 / 𝑥𝐶
4 nfcv 2891 . . . . . . 7 𝑥0
52, 3, 4nfif 4515 . . . . . 6 𝑥if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)
6 eleq1w 2811 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
7 csbeq1a 3873 . . . . . . 7 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
86, 7ifbieq1d 4509 . . . . . 6 (𝑥 = 𝑦 → if(𝑥𝐴, 𝐶, 0) = if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
91, 5, 8cbvmpt 5204 . . . . 5 (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
10 itgss3.1 . . . . . . 7 (𝜑𝐴𝐵)
1110adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴𝐵)
12 nfcv 2891 . . . . . . . . . . . 12 𝑦𝐶
1312, 3, 7cbvmpt 5204 . . . . . . . . . . 11 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
14 iftrue 4490 . . . . . . . . . . . 12 (𝑦𝐴 → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 𝑦 / 𝑥𝐶)
1514mpteq2ia 5197 . . . . . . . . . . 11 (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) = (𝑦𝐴𝑦 / 𝑥𝐶)
1613, 15eqtr4i 2755 . . . . . . . . . 10 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
17 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
1816, 17eqeltrrid 2833 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
19 iblmbf 25701 . . . . . . . . 9 ((𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2018, 19syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
2110sselda 3943 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐵)
22 itgss3.4 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2321, 22syldan 591 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
2423fmpttd 7069 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴𝐶):𝐴⟶ℂ)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐴𝐶):𝐴⟶ℂ)
2616feq1i 6661 . . . . . . . . . 10 ((𝑥𝐴𝐶):𝐴⟶ℂ ↔ (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
2725, 26sylib 218 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐴⟶ℂ)
2827fvmptelcdm 7067 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦𝐴) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
2920, 28mbfdm2 25571 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐴 ∈ dom vol)
30 undif 4441 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3110, 30sylib 218 . . . . . . . . 9 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3231adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
33 id 22 . . . . . . . . 9 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
34 itgss3.2 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
3534ssdifssd 4106 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ⊆ ℝ)
36 itgss3.3 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐵𝐴)) = 0)
37 nulmbl 25469 . . . . . . . . . 10 (((𝐵𝐴) ⊆ ℝ ∧ (vol*‘(𝐵𝐴)) = 0) → (𝐵𝐴) ∈ dom vol)
3835, 36, 37syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ dom vol)
39 unmbl 25471 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4033, 38, 39syl2anr 597 . . . . . . . 8 ((𝜑𝐴 ∈ dom vol) → (𝐴 ∪ (𝐵𝐴)) ∈ dom vol)
4132, 40eqeltrrd 2829 . . . . . . 7 ((𝜑𝐴 ∈ dom vol) → 𝐵 ∈ dom vol)
4229, 41syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → 𝐵 ∈ dom vol)
43 eldifn 4091 . . . . . . . 8 (𝑦 ∈ (𝐵𝐴) → ¬ 𝑦𝐴)
4443adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → ¬ 𝑦𝐴)
4544iffalsed 4495 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) ∧ 𝑦 ∈ (𝐵𝐴)) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) = 0)
4611, 42, 28, 45, 18iblss2 25740 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
479, 46eqeltrid 2832 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
48 iftrue 4490 . . . . . . 7 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
4948mpteq2ia 5197 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
501, 5, 8cbvmpt 5204 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5149, 50eqtr3i 2754 . . . . 5 (𝑥𝐴𝐶) = (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0))
5210adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴𝐵)
53 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
549, 53eqeltrrid 2833 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
55 iblmbf 25701 . . . . . . . . 9 ((𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
5654, 55syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ MblFn)
57 0cn 11142 . . . . . . . . . . . . 13 0 ∈ ℂ
58 ifcl 4530 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
5922, 57, 58sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℂ)
6059fmpttd 7069 . . . . . . . . . . 11 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ)
619feq1i 6661 . . . . . . . . . . 11 ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)):𝐵⟶ℂ ↔ (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6260, 61sylib 218 . . . . . . . . . 10 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6362adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐵 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)):𝐵⟶ℂ)
6463fvmptelcdm 7067 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) ∧ 𝑦𝐵) → if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0) ∈ ℂ)
6556, 64mbfdm2 25571 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐵 ∈ dom vol)
66 dfss4 4228 . . . . . . . . . 10 (𝐴𝐵 ↔ (𝐵 ∖ (𝐵𝐴)) = 𝐴)
6710, 66sylib 218 . . . . . . . . 9 (𝜑 → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
6867adantr 480 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) = 𝐴)
69 id 22 . . . . . . . . 9 (𝐵 ∈ dom vol → 𝐵 ∈ dom vol)
70 difmbl 25477 . . . . . . . . 9 ((𝐵 ∈ dom vol ∧ (𝐵𝐴) ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7169, 38, 70syl2anr 597 . . . . . . . 8 ((𝜑𝐵 ∈ dom vol) → (𝐵 ∖ (𝐵𝐴)) ∈ dom vol)
7268, 71eqeltrrd 2829 . . . . . . 7 ((𝜑𝐵 ∈ dom vol) → 𝐴 ∈ dom vol)
7365, 72syldan 591 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → 𝐴 ∈ dom vol)
7452, 73, 64, 54iblss 25739 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑦𝐴 ↦ if(𝑦𝐴, 𝑦 / 𝑥𝐶, 0)) ∈ 𝐿1)
7551, 74eqeltrid 2832 . . . 4 ((𝜑 ∧ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1) → (𝑥𝐴𝐶) ∈ 𝐿1)
7647, 75impbida 800 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1))
7767eleq2d 2814 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵 ∖ (𝐵𝐴)) ↔ 𝑥𝐴))
7877biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → 𝑥𝐴)
7978, 48syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ (𝐵𝐴))) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
8059, 22, 35, 36, 79itgeqa 25748 . . . 4 (𝜑 → (((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥))
8180simpld 494 . . 3 (𝜑 → ((𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
8276, 81bitrd 279 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1))
83 itgss2 25747 . . . 4 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
8410, 83syl 17 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
8580simprd 495 . . 3 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 = ∫𝐵𝐶 d𝑥)
8684, 85eqtrd 2764 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
8782, 86jca 511 1 (𝜑 → (((𝑥𝐴𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐶) ∈ 𝐿1) ∧ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  csb 3859  cdif 3908  cun 3909  wss 3911  ifcif 4484  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  cc 11042  cr 11043  0cc0 11044  vol*covol 25396  volcvol 25397  MblFncmbf 25548  𝐿1cibl 25551  citg 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-itg 25557
This theorem is referenced by:  itgioo  25750  itgsplitioo  25772  itgvol0  45959  ibliooicc  45962
  Copyright terms: Public domain W3C validator