![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgless | Structured version Visualization version GIF version |
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
itgless.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
itgless.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
itgless.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) |
itgless.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) |
itgless.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgless | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgless.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | itgss2 25868 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) |
4 | itgless.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
5 | iblmbf 25822 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
7 | itgless.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) | |
8 | 6, 7 | mbfdm2 25691 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom vol) |
9 | 1 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
10 | 9, 7 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
11 | 0re 11292 | . . . . 5 ⊢ 0 ∈ ℝ | |
12 | ifcl 4593 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) | |
13 | 10, 11, 12 | sylancl 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) |
14 | eldifn 4155 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
16 | 15 | iffalsed 4559 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) |
17 | iftrue 4554 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) | |
18 | 17 | mpteq2ia 5269 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
19 | itgless.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
20 | 1, 19, 7, 4 | iblss 25860 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
21 | 18, 20 | eqeltrid 2848 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) |
22 | 1, 8, 13, 16, 21 | iblss2 25861 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) |
23 | 7, 11, 12 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) |
24 | 7 | leidd 11856 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ≤ 𝐶) |
25 | itgless.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) | |
26 | breq1 5169 | . . . . 5 ⊢ (𝐶 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (𝐶 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
27 | breq1 5169 | . . . . 5 ⊢ (0 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
28 | 26, 27 | ifboth 4587 | . . . 4 ⊢ ((𝐶 ≤ 𝐶 ∧ 0 ≤ 𝐶) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) |
29 | 24, 25, 28 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) |
30 | 22, 4, 23, 7, 29 | itgle 25865 | . 2 ⊢ (𝜑 → ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
31 | 3, 30 | eqbrtrd 5188 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ℝcr 11183 0cc0 11184 ≤ cle 11325 volcvol 25517 MblFncmbf 25668 𝐿1cibl 25671 ∫citg 25672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |