Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgless | Structured version Visualization version GIF version |
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
itgless.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
itgless.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
itgless.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) |
itgless.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) |
itgless.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgless | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgless.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | itgss2 24527 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) |
4 | itgless.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
5 | iblmbf 24482 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
7 | itgless.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) | |
8 | 6, 7 | mbfdm2 24352 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom vol) |
9 | 1 | sselda 3895 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
10 | 9, 7 | syldan 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
11 | 0re 10695 | . . . . 5 ⊢ 0 ∈ ℝ | |
12 | ifcl 4469 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) | |
13 | 10, 11, 12 | sylancl 589 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) |
14 | eldifn 4036 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
15 | 14 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
16 | 15 | iffalsed 4435 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) |
17 | iftrue 4430 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) | |
18 | 17 | mpteq2ia 5128 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
19 | itgless.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
20 | 1, 19, 7, 4 | iblss 24519 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
21 | 18, 20 | eqeltrid 2857 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) |
22 | 1, 8, 13, 16, 21 | iblss2 24520 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) |
23 | 7, 11, 12 | sylancl 589 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) |
24 | 7 | leidd 11258 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ≤ 𝐶) |
25 | itgless.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) | |
26 | breq1 5040 | . . . . 5 ⊢ (𝐶 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (𝐶 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
27 | breq1 5040 | . . . . 5 ⊢ (0 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
28 | 26, 27 | ifboth 4463 | . . . 4 ⊢ ((𝐶 ≤ 𝐶 ∧ 0 ≤ 𝐶) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) |
29 | 24, 25, 28 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) |
30 | 22, 4, 23, 7, 29 | itgle 24524 | . 2 ⊢ (𝜑 → ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
31 | 3, 30 | eqbrtrd 5059 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ∖ cdif 3858 ⊆ wss 3861 ifcif 4424 class class class wbr 5037 ↦ cmpt 5117 dom cdm 5529 ℝcr 10588 0cc0 10589 ≤ cle 10728 volcvol 24178 MblFncmbf 24329 𝐿1cibl 24332 ∫citg 24333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-disj 5003 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-ofr 7413 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-pm 8426 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-sup 8953 df-inf 8954 df-oi 9021 df-dju 9377 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-n0 11949 df-z 12035 df-uz 12297 df-q 12403 df-rp 12445 df-xadd 12563 df-ioo 12797 df-ico 12799 df-icc 12800 df-fz 12954 df-fzo 13097 df-fl 13225 df-mod 13301 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-sum 15105 df-xmet 20174 df-met 20175 df-ovol 24179 df-vol 24180 df-mbf 24334 df-itg1 24335 df-itg2 24336 df-ibl 24337 df-itg 24338 df-0p 24385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |