MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgless Structured version   Visualization version   GIF version

Theorem itgless 24420
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itgless.1 (𝜑𝐴𝐵)
itgless.2 (𝜑𝐴 ∈ dom vol)
itgless.3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
itgless.4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
itgless.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgless (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgless
StepHypRef Expression
1 itgless.1 . . 3 (𝜑𝐴𝐵)
2 itgss2 24416 . . 3 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
31, 2syl 17 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
4 itgless.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
5 iblmbf 24371 . . . . . 6 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
64, 5syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
7 itgless.3 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
86, 7mbfdm2 24241 . . . 4 (𝜑𝐵 ∈ dom vol)
91sselda 3970 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐵)
109, 7syldan 593 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
11 0re 10646 . . . . 5 0 ∈ ℝ
12 ifcl 4514 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
1310, 11, 12sylancl 588 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
14 eldifn 4107 . . . . . 6 (𝑥 ∈ (𝐵𝐴) → ¬ 𝑥𝐴)
1514adantl 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → ¬ 𝑥𝐴)
1615iffalsed 4481 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
17 iftrue 4476 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
1817mpteq2ia 5160 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
19 itgless.2 . . . . . 6 (𝜑𝐴 ∈ dom vol)
201, 19, 7, 4iblss 24408 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2118, 20eqeltrid 2920 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
221, 8, 13, 16, 21iblss2 24409 . . 3 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
237, 11, 12sylancl 588 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
247leidd 11209 . . . 4 ((𝜑𝑥𝐵) → 𝐶𝐶)
25 itgless.4 . . . 4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
26 breq1 5072 . . . . 5 (𝐶 = if(𝑥𝐴, 𝐶, 0) → (𝐶𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
27 breq1 5072 . . . . 5 (0 = if(𝑥𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
2826, 27ifboth 4508 . . . 4 ((𝐶𝐶 ∧ 0 ≤ 𝐶) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
2924, 25, 28syl2anc 586 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
3022, 4, 23, 7, 29itgle 24413 . 2 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥)
313, 30eqbrtrd 5091 1 (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  cdif 3936  wss 3939  ifcif 4470   class class class wbr 5069  cmpt 5149  dom cdm 5558  cr 10539  0cc0 10540  cle 10679  volcvol 24067  MblFncmbf 24218  𝐿1cibl 24221  citg 24222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-xmet 20541  df-met 20542  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator