MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgless Structured version   Visualization version   GIF version

Theorem itgless 24531
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itgless.1 (𝜑𝐴𝐵)
itgless.2 (𝜑𝐴 ∈ dom vol)
itgless.3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
itgless.4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
itgless.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgless (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgless
StepHypRef Expression
1 itgless.1 . . 3 (𝜑𝐴𝐵)
2 itgss2 24527 . . 3 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
31, 2syl 17 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
4 itgless.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
5 iblmbf 24482 . . . . . 6 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
64, 5syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
7 itgless.3 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
86, 7mbfdm2 24352 . . . 4 (𝜑𝐵 ∈ dom vol)
91sselda 3895 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐵)
109, 7syldan 594 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
11 0re 10695 . . . . 5 0 ∈ ℝ
12 ifcl 4469 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
1310, 11, 12sylancl 589 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
14 eldifn 4036 . . . . . 6 (𝑥 ∈ (𝐵𝐴) → ¬ 𝑥𝐴)
1514adantl 485 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → ¬ 𝑥𝐴)
1615iffalsed 4435 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
17 iftrue 4430 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
1817mpteq2ia 5128 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
19 itgless.2 . . . . . 6 (𝜑𝐴 ∈ dom vol)
201, 19, 7, 4iblss 24519 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2118, 20eqeltrid 2857 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
221, 8, 13, 16, 21iblss2 24520 . . 3 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
237, 11, 12sylancl 589 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
247leidd 11258 . . . 4 ((𝜑𝑥𝐵) → 𝐶𝐶)
25 itgless.4 . . . 4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
26 breq1 5040 . . . . 5 (𝐶 = if(𝑥𝐴, 𝐶, 0) → (𝐶𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
27 breq1 5040 . . . . 5 (0 = if(𝑥𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
2826, 27ifboth 4463 . . . 4 ((𝐶𝐶 ∧ 0 ≤ 𝐶) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
2924, 25, 28syl2anc 587 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
3022, 4, 23, 7, 29itgle 24524 . 2 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥)
313, 30eqbrtrd 5059 1 (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1539  wcel 2112  cdif 3858  wss 3861  ifcif 4424   class class class wbr 5037  cmpt 5117  dom cdm 5529  cr 10588  0cc0 10589  cle 10728  volcvol 24178  MblFncmbf 24329  𝐿1cibl 24332  citg 24333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-disj 5003  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-ofr 7413  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-oi 9021  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-n0 11949  df-z 12035  df-uz 12297  df-q 12403  df-rp 12445  df-xadd 12563  df-ioo 12797  df-ico 12799  df-icc 12800  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-sum 15105  df-xmet 20174  df-met 20175  df-ovol 24179  df-vol 24180  df-mbf 24334  df-itg1 24335  df-itg2 24336  df-ibl 24337  df-itg 24338  df-0p 24385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator