MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgless Structured version   Visualization version   GIF version

Theorem itgless 25325
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itgless.1 (𝜑𝐴𝐵)
itgless.2 (𝜑𝐴 ∈ dom vol)
itgless.3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
itgless.4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
itgless.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgless (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgless
StepHypRef Expression
1 itgless.1 . . 3 (𝜑𝐴𝐵)
2 itgss2 25321 . . 3 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
31, 2syl 17 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
4 itgless.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
5 iblmbf 25276 . . . . . 6 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
64, 5syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
7 itgless.3 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
86, 7mbfdm2 25145 . . . 4 (𝜑𝐵 ∈ dom vol)
91sselda 3981 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐵)
109, 7syldan 591 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
11 0re 11212 . . . . 5 0 ∈ ℝ
12 ifcl 4572 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
1310, 11, 12sylancl 586 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
14 eldifn 4126 . . . . . 6 (𝑥 ∈ (𝐵𝐴) → ¬ 𝑥𝐴)
1514adantl 482 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → ¬ 𝑥𝐴)
1615iffalsed 4538 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
17 iftrue 4533 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
1817mpteq2ia 5250 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
19 itgless.2 . . . . . 6 (𝜑𝐴 ∈ dom vol)
201, 19, 7, 4iblss 25313 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2118, 20eqeltrid 2837 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
221, 8, 13, 16, 21iblss2 25314 . . 3 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
237, 11, 12sylancl 586 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
247leidd 11776 . . . 4 ((𝜑𝑥𝐵) → 𝐶𝐶)
25 itgless.4 . . . 4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
26 breq1 5150 . . . . 5 (𝐶 = if(𝑥𝐴, 𝐶, 0) → (𝐶𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
27 breq1 5150 . . . . 5 (0 = if(𝑥𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
2826, 27ifboth 4566 . . . 4 ((𝐶𝐶 ∧ 0 ≤ 𝐶) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
2924, 25, 28syl2anc 584 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
3022, 4, 23, 7, 29itgle 25318 . 2 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥)
313, 30eqbrtrd 5169 1 (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cdif 3944  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  cr 11105  0cc0 11106  cle 11245  volcvol 24971  MblFncmbf 25122  𝐿1cibl 25125  citg 25126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xadd 13089  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-xmet 20929  df-met 20930  df-ovol 24972  df-vol 24973  df-mbf 25127  df-itg1 25128  df-itg2 25129  df-ibl 25130  df-itg 25131  df-0p 25178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator