|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > itgless | Structured version Visualization version GIF version | ||
| Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| itgless.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | 
| itgless.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) | 
| itgless.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) | 
| itgless.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) | 
| itgless.5 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | 
| Ref | Expression | 
|---|---|
| itgless | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | itgless.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | itgss2 25849 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥) | 
| 4 | itgless.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
| 5 | iblmbf 25803 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) | 
| 7 | itgless.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) | |
| 8 | 6, 7 | mbfdm2 25673 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom vol) | 
| 9 | 1 | sselda 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | 
| 10 | 9, 7 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) | 
| 11 | 0re 11264 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 12 | ifcl 4570 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) | |
| 13 | 10, 11, 12 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) | 
| 14 | eldifn 4131 | . . . . . 6 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
| 15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) | 
| 16 | 15 | iffalsed 4535 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 𝐶, 0) = 0) | 
| 17 | iftrue 4530 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, 𝐶, 0) = 𝐶) | |
| 18 | 17 | mpteq2ia 5244 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| 19 | itgless.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
| 20 | 1, 19, 7, 4 | iblss 25841 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | 
| 21 | 18, 20 | eqeltrid 2844 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) | 
| 22 | 1, 8, 13, 16, 21 | iblss2 25842 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ∈ 𝐴, 𝐶, 0)) ∈ 𝐿1) | 
| 23 | 7, 11, 12 | sylancl 586 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ∈ ℝ) | 
| 24 | 7 | leidd 11830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ≤ 𝐶) | 
| 25 | itgless.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ≤ 𝐶) | |
| 26 | breq1 5145 | . . . . 5 ⊢ (𝐶 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (𝐶 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
| 27 | breq1 5145 | . . . . 5 ⊢ (0 = if(𝑥 ∈ 𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶)) | |
| 28 | 26, 27 | ifboth 4564 | . . . 4 ⊢ ((𝐶 ≤ 𝐶 ∧ 0 ≤ 𝐶) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) | 
| 29 | 24, 25, 28 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, 𝐶, 0) ≤ 𝐶) | 
| 30 | 22, 4, 23, 7, 29 | itgle 25846 | . 2 ⊢ (𝜑 → ∫𝐵if(𝑥 ∈ 𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥) | 
| 31 | 3, 30 | eqbrtrd 5164 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3947 ⊆ wss 3950 ifcif 4524 class class class wbr 5142 ↦ cmpt 5224 dom cdm 5684 ℝcr 11155 0cc0 11156 ≤ cle 11297 volcvol 25499 MblFncmbf 25650 𝐿1cibl 25653 ∫citg 25654 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xadd 13156 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-xmet 21358 df-met 21359 df-ovol 25500 df-vol 25501 df-mbf 25655 df-itg1 25656 df-itg2 25657 df-ibl 25658 df-itg 25659 df-0p 25706 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |