Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgless Structured version   Visualization version   GIF version

Theorem itgless 24531
 Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itgless.1 (𝜑𝐴𝐵)
itgless.2 (𝜑𝐴 ∈ dom vol)
itgless.3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
itgless.4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
itgless.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgless (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgless
StepHypRef Expression
1 itgless.1 . . 3 (𝜑𝐴𝐵)
2 itgss2 24527 . . 3 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
31, 2syl 17 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
4 itgless.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
5 iblmbf 24482 . . . . . 6 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
64, 5syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
7 itgless.3 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
86, 7mbfdm2 24352 . . . 4 (𝜑𝐵 ∈ dom vol)
91sselda 3895 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐵)
109, 7syldan 594 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
11 0re 10695 . . . . 5 0 ∈ ℝ
12 ifcl 4469 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
1310, 11, 12sylancl 589 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
14 eldifn 4036 . . . . . 6 (𝑥 ∈ (𝐵𝐴) → ¬ 𝑥𝐴)
1514adantl 485 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → ¬ 𝑥𝐴)
1615iffalsed 4435 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
17 iftrue 4430 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
1817mpteq2ia 5128 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
19 itgless.2 . . . . . 6 (𝜑𝐴 ∈ dom vol)
201, 19, 7, 4iblss 24519 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2118, 20eqeltrid 2857 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
221, 8, 13, 16, 21iblss2 24520 . . 3 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
237, 11, 12sylancl 589 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
247leidd 11258 . . . 4 ((𝜑𝑥𝐵) → 𝐶𝐶)
25 itgless.4 . . . 4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
26 breq1 5040 . . . . 5 (𝐶 = if(𝑥𝐴, 𝐶, 0) → (𝐶𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
27 breq1 5040 . . . . 5 (0 = if(𝑥𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
2826, 27ifboth 4463 . . . 4 ((𝐶𝐶 ∧ 0 ≤ 𝐶) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
2924, 25, 28syl2anc 587 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
3022, 4, 23, 7, 29itgle 24524 . 2 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥)
313, 30eqbrtrd 5059 1 (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1539   ∈ wcel 2112   ∖ cdif 3858   ⊆ wss 3861  ifcif 4424   class class class wbr 5037   ↦ cmpt 5117  dom cdm 5529  ℝcr 10588  0cc0 10589   ≤ cle 10728  volcvol 24178  MblFncmbf 24329  𝐿1cibl 24332  ∫citg 24333 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-disj 5003  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-ofr 7413  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-er 8306  df-map 8425  df-pm 8426  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-sup 8953  df-inf 8954  df-oi 9021  df-dju 9377  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-n0 11949  df-z 12035  df-uz 12297  df-q 12403  df-rp 12445  df-xadd 12563  df-ioo 12797  df-ico 12799  df-icc 12800  df-fz 12954  df-fzo 13097  df-fl 13225  df-mod 13301  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-sum 15105  df-xmet 20174  df-met 20175  df-ovol 24179  df-vol 24180  df-mbf 24334  df-itg1 24335  df-itg2 24336  df-ibl 24337  df-itg 24338  df-0p 24385 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator