MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgless Structured version   Visualization version   GIF version

Theorem itgless 25872
Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itgless.1 (𝜑𝐴𝐵)
itgless.2 (𝜑𝐴 ∈ dom vol)
itgless.3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
itgless.4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
itgless.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
itgless (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem itgless
StepHypRef Expression
1 itgless.1 . . 3 (𝜑𝐴𝐵)
2 itgss2 25868 . . 3 (𝐴𝐵 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
31, 2syl 17 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥)
4 itgless.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
5 iblmbf 25822 . . . . . 6 ((𝑥𝐵𝐶) ∈ 𝐿1 → (𝑥𝐵𝐶) ∈ MblFn)
64, 5syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
7 itgless.3 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
86, 7mbfdm2 25691 . . . 4 (𝜑𝐵 ∈ dom vol)
91sselda 4008 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐵)
109, 7syldan 590 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
11 0re 11292 . . . . 5 0 ∈ ℝ
12 ifcl 4593 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
1310, 11, 12sylancl 585 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
14 eldifn 4155 . . . . . 6 (𝑥 ∈ (𝐵𝐴) → ¬ 𝑥𝐴)
1514adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → ¬ 𝑥𝐴)
1615iffalsed 4559 . . . 4 ((𝜑𝑥 ∈ (𝐵𝐴)) → if(𝑥𝐴, 𝐶, 0) = 0)
17 iftrue 4554 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
1817mpteq2ia 5269 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) = (𝑥𝐴𝐶)
19 itgless.2 . . . . . 6 (𝜑𝐴 ∈ dom vol)
201, 19, 7, 4iblss 25860 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2118, 20eqeltrid 2848 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
221, 8, 13, 16, 21iblss2 25861 . . 3 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝐴, 𝐶, 0)) ∈ 𝐿1)
237, 11, 12sylancl 585 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ∈ ℝ)
247leidd 11856 . . . 4 ((𝜑𝑥𝐵) → 𝐶𝐶)
25 itgless.4 . . . 4 ((𝜑𝑥𝐵) → 0 ≤ 𝐶)
26 breq1 5169 . . . . 5 (𝐶 = if(𝑥𝐴, 𝐶, 0) → (𝐶𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
27 breq1 5169 . . . . 5 (0 = if(𝑥𝐴, 𝐶, 0) → (0 ≤ 𝐶 ↔ if(𝑥𝐴, 𝐶, 0) ≤ 𝐶))
2826, 27ifboth 4587 . . . 4 ((𝐶𝐶 ∧ 0 ≤ 𝐶) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
2924, 25, 28syl2anc 583 . . 3 ((𝜑𝑥𝐵) → if(𝑥𝐴, 𝐶, 0) ≤ 𝐶)
3022, 4, 23, 7, 29itgle 25865 . 2 (𝜑 → ∫𝐵if(𝑥𝐴, 𝐶, 0) d𝑥 ≤ ∫𝐵𝐶 d𝑥)
313, 30eqbrtrd 5188 1 (𝜑 → ∫𝐴𝐶 d𝑥 ≤ ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cr 11183  0cc0 11184  cle 11325  volcvol 25517  MblFncmbf 25668  𝐿1cibl 25671  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator