Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version |
Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
retopbas | ⊢ ran (,) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13035 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | 1 | fdmi 6557 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
3 | 2 | imaeq2i 5927 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
4 | imadmrn 5939 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
5 | 3, 4 | eqtr3i 2767 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
6 | ssid 3923 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
7 | 6 | qtopbaslem 23656 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
8 | 5, 7 | eqeltrri 2835 | 1 ⊢ ran (,) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 𝒫 cpw 4513 × cxp 5549 dom cdm 5551 ran crn 5552 “ cima 5554 ℝcr 10728 ℝ*cxr 10866 (,)cioo 12935 TopBasesctb 21842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-ioo 12939 df-bases 21843 |
This theorem is referenced by: retop 23659 uniretop 23660 iooretop 23663 qdensere 23667 tgioo 23693 xrtgioo 23703 bndth 23855 ovolicc2 24419 cncombf 24555 cnmbf 24556 elmbfmvol2 31946 iccllysconn 32925 rellysconn 32926 mblfinlem3 35553 mblfinlem4 35554 ismblfin 35555 cnambfre 35562 |
Copyright terms: Public domain | W3C validator |