| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version | ||
| Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| retopbas | ⊢ ran (,) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof 13408 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 2 | 1 | fdmi 6699 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
| 3 | 2 | imaeq2i 6029 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
| 4 | imadmrn 6041 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
| 5 | 3, 4 | eqtr3i 2754 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
| 6 | ssid 3969 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
| 7 | 6 | qtopbaslem 24646 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
| 8 | 5, 7 | eqeltrri 2825 | 1 ⊢ ran (,) ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 𝒫 cpw 4563 × cxp 5636 dom cdm 5638 ran crn 5639 “ cima 5641 ℝcr 11067 ℝ*cxr 11207 (,)cioo 13306 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-bases 22833 |
| This theorem is referenced by: retop 24649 uniretop 24650 iooretop 24653 qdensere 24657 tgioo 24684 xrtgioo 24695 bndth 24857 ovolicc2 25423 cncombf 25559 cnmbf 25560 elmbfmvol2 34258 iccllysconn 35237 rellysconn 35238 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 cnambfre 37662 |
| Copyright terms: Public domain | W3C validator |