Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version |
Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
retopbas | ⊢ ran (,) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13179 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | 1 | fdmi 6612 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
3 | 2 | imaeq2i 5967 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
4 | imadmrn 5979 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
5 | 3, 4 | eqtr3i 2768 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
6 | ssid 3943 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
7 | 6 | qtopbaslem 23922 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
8 | 5, 7 | eqeltrri 2836 | 1 ⊢ ran (,) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 𝒫 cpw 4533 × cxp 5587 dom cdm 5589 ran crn 5590 “ cima 5592 ℝcr 10870 ℝ*cxr 11008 (,)cioo 13079 TopBasesctb 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 df-bases 22096 |
This theorem is referenced by: retop 23925 uniretop 23926 iooretop 23929 qdensere 23933 tgioo 23959 xrtgioo 23969 bndth 24121 ovolicc2 24686 cncombf 24822 cnmbf 24823 elmbfmvol2 32234 iccllysconn 33212 rellysconn 33213 mblfinlem3 35816 mblfinlem4 35817 ismblfin 35818 cnambfre 35825 |
Copyright terms: Public domain | W3C validator |