![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version |
Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
retopbas | ⊢ ran (,) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13470 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | 1 | fdmi 6729 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
3 | 2 | imaeq2i 6058 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
4 | imadmrn 6070 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
5 | 3, 4 | eqtr3i 2756 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
6 | ssid 4002 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
7 | 6 | qtopbaslem 24761 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
8 | 5, 7 | eqeltrri 2823 | 1 ⊢ ran (,) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 𝒫 cpw 4598 × cxp 5671 dom cdm 5673 ran crn 5674 “ cima 5676 ℝcr 11146 ℝ*cxr 11286 (,)cioo 13370 TopBasesctb 22934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-pre-lttri 11221 ax-pre-lttrn 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-ioo 13374 df-bases 22935 |
This theorem is referenced by: retop 24764 uniretop 24765 iooretop 24768 qdensere 24772 tgioo 24798 xrtgioo 24808 bndth 24970 ovolicc2 25537 cncombf 25673 cnmbf 25674 elmbfmvol2 34112 iccllysconn 35089 rellysconn 35090 mblfinlem3 37371 mblfinlem4 37372 ismblfin 37373 cnambfre 37380 |
Copyright terms: Public domain | W3C validator |