![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version |
Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
retopbas | ⊢ ran (,) ∈ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 13428 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
2 | 1 | fdmi 6728 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
3 | 2 | imaeq2i 6056 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
4 | imadmrn 6068 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
5 | 3, 4 | eqtr3i 2760 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
6 | ssid 4003 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
7 | 6 | qtopbaslem 24495 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
8 | 5, 7 | eqeltrri 2828 | 1 ⊢ ran (,) ∈ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 𝒫 cpw 4601 × cxp 5673 dom cdm 5675 ran crn 5676 “ cima 5678 ℝcr 11111 ℝ*cxr 11251 (,)cioo 13328 TopBasesctb 22668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 df-bases 22669 |
This theorem is referenced by: retop 24498 uniretop 24499 iooretop 24502 qdensere 24506 tgioo 24532 xrtgioo 24542 bndth 24704 ovolicc2 25271 cncombf 25407 cnmbf 25408 elmbfmvol2 33564 iccllysconn 34539 rellysconn 34540 mblfinlem3 36830 mblfinlem4 36831 ismblfin 36832 cnambfre 36839 |
Copyright terms: Public domain | W3C validator |