| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopbas | Structured version Visualization version GIF version | ||
| Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| retopbas | ⊢ ran (,) ∈ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof 13347 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 2 | 1 | fdmi 6662 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
| 3 | 2 | imaeq2i 6007 | . . 3 ⊢ ((,) “ dom (,)) = ((,) “ (ℝ* × ℝ*)) |
| 4 | imadmrn 6019 | . . 3 ⊢ ((,) “ dom (,)) = ran (,) | |
| 5 | 3, 4 | eqtr3i 2756 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) = ran (,) |
| 6 | ssid 3957 | . . 3 ⊢ ℝ* ⊆ ℝ* | |
| 7 | 6 | qtopbaslem 24674 | . 2 ⊢ ((,) “ (ℝ* × ℝ*)) ∈ TopBases |
| 8 | 5, 7 | eqeltrri 2828 | 1 ⊢ ran (,) ∈ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 𝒫 cpw 4550 × cxp 5614 dom cdm 5616 ran crn 5617 “ cima 5619 ℝcr 11005 ℝ*cxr 11145 (,)cioo 13245 TopBasesctb 22861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 df-bases 22862 |
| This theorem is referenced by: retop 24677 uniretop 24678 iooretop 24681 qdensere 24685 tgioo 24712 xrtgioo 24723 bndth 24885 ovolicc2 25451 cncombf 25587 cnmbf 25588 elmbfmvol2 34278 iccllysconn 35292 rellysconn 35293 mblfinlem3 37705 mblfinlem4 37706 ismblfin 37707 cnambfre 37714 |
| Copyright terms: Public domain | W3C validator |