MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jech9.3 Structured version   Visualization version   GIF version

Theorem jech9.3 9833
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
jech9.3 𝑥 ∈ On (𝑅1𝑥) = V

Proof of Theorem jech9.3
StepHypRef Expression
1 r1fnon 9786 . . 3 𝑅1 Fn On
2 fniunfv 7244 . . 3 (𝑅1 Fn On → 𝑥 ∈ On (𝑅1𝑥) = ran 𝑅1)
31, 2ax-mp 5 . 2 𝑥 ∈ On (𝑅1𝑥) = ran 𝑅1
4 fndm 6646 . . . . . 6 (𝑅1 Fn On → dom 𝑅1 = On)
51, 4ax-mp 5 . . . . 5 dom 𝑅1 = On
65imaeq2i 6050 . . . 4 (𝑅1 “ dom 𝑅1) = (𝑅1 “ On)
7 imadmrn 6062 . . . 4 (𝑅1 “ dom 𝑅1) = ran 𝑅1
86, 7eqtr3i 2761 . . 3 (𝑅1 “ On) = ran 𝑅1
98unieqi 4900 . 2 (𝑅1 “ On) = ran 𝑅1
10 unir1 9832 . 2 (𝑅1 “ On) = V
113, 9, 103eqtr2i 2765 1 𝑥 ∈ On (𝑅1𝑥) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3464   cuni 4888   ciun 4972  dom cdm 5659  ran crn 5660  cima 5662  Oncon0 6357   Fn wfn 6531  cfv 6536  𝑅1cr1 9781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-r1 9783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator