MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jech9.3 Structured version   Visualization version   GIF version

Theorem jech9.3 9767
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
jech9.3 𝑥 ∈ On (𝑅1𝑥) = V

Proof of Theorem jech9.3
StepHypRef Expression
1 r1fnon 9720 . . 3 𝑅1 Fn On
2 fniunfv 7221 . . 3 (𝑅1 Fn On → 𝑥 ∈ On (𝑅1𝑥) = ran 𝑅1)
31, 2ax-mp 5 . 2 𝑥 ∈ On (𝑅1𝑥) = ran 𝑅1
4 fndm 6621 . . . . . 6 (𝑅1 Fn On → dom 𝑅1 = On)
51, 4ax-mp 5 . . . . 5 dom 𝑅1 = On
65imaeq2i 6029 . . . 4 (𝑅1 “ dom 𝑅1) = (𝑅1 “ On)
7 imadmrn 6041 . . . 4 (𝑅1 “ dom 𝑅1) = ran 𝑅1
86, 7eqtr3i 2754 . . 3 (𝑅1 “ On) = ran 𝑅1
98unieqi 4883 . 2 (𝑅1 “ On) = ran 𝑅1
10 unir1 9766 . 2 (𝑅1 “ On) = V
113, 9, 103eqtr2i 2758 1 𝑥 ∈ On (𝑅1𝑥) = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447   cuni 4871   ciun 4955  dom cdm 5638  ran crn 5639  cima 5641  Oncon0 6332   Fn wfn 6506  cfv 6511  𝑅1cr1 9715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator