![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version |
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9757 | . . 3 ⊢ 𝑅1 Fn On | |
2 | fniunfv 7238 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
4 | fndm 6642 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
6 | 5 | imaeq2i 6047 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
7 | imadmrn 6059 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
8 | 6, 7 | eqtr3i 2754 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
9 | 8 | unieqi 4911 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
10 | unir1 9803 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
11 | 3, 9, 10 | 3eqtr2i 2758 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3466 ∪ cuni 4899 ∪ ciun 4987 dom cdm 5666 ran crn 5667 “ cima 5669 Oncon0 6354 Fn wfn 6528 ‘cfv 6533 𝑅1cr1 9752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9582 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-r1 9754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |