![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version |
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9768 | . . 3 ⊢ 𝑅1 Fn On | |
2 | fniunfv 7249 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
4 | fndm 6652 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
6 | 5 | imaeq2i 6057 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
7 | imadmrn 6069 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
8 | 6, 7 | eqtr3i 2761 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
9 | 8 | unieqi 4921 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
10 | unir1 9814 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
11 | 3, 9, 10 | 3eqtr2i 2765 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 Vcvv 3473 ∪ cuni 4908 ∪ ciun 4997 dom cdm 5676 ran crn 5677 “ cima 5679 Oncon0 6364 Fn wfn 6538 ‘cfv 6543 𝑅1cr1 9763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-r1 9765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |