| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version | ||
| Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon 9720 | . . 3 ⊢ 𝑅1 Fn On | |
| 2 | fniunfv 7221 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
| 4 | fndm 6621 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
| 6 | 5 | imaeq2i 6029 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
| 7 | imadmrn 6041 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
| 8 | 6, 7 | eqtr3i 2754 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
| 9 | 8 | unieqi 4883 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
| 10 | unir1 9766 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
| 11 | 3, 9, 10 | 3eqtr2i 2758 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ∪ cuni 4871 ∪ ciun 4955 dom cdm 5638 ran crn 5639 “ cima 5641 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 𝑅1cr1 9715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |