| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version | ||
| Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon 9660 | . . 3 ⊢ 𝑅1 Fn On | |
| 2 | fniunfv 7181 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
| 4 | fndm 6584 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
| 6 | 5 | imaeq2i 6006 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
| 7 | imadmrn 6018 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
| 8 | 6, 7 | eqtr3i 2756 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
| 9 | 8 | unieqi 4868 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
| 10 | unir1 9706 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
| 11 | 3, 9, 10 | 3eqtr2i 2760 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∪ cuni 4856 ∪ ciun 4939 dom cdm 5614 ran crn 5615 “ cima 5617 Oncon0 6306 Fn wfn 6476 ‘cfv 6481 𝑅1cr1 9655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |