| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version | ||
| Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon 9786 | . . 3 ⊢ 𝑅1 Fn On | |
| 2 | fniunfv 7244 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
| 4 | fndm 6646 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
| 6 | 5 | imaeq2i 6050 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
| 7 | imadmrn 6062 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
| 8 | 6, 7 | eqtr3i 2761 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
| 9 | 8 | unieqi 4900 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
| 10 | unir1 9832 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
| 11 | 3, 9, 10 | 3eqtr2i 2765 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∪ cuni 4888 ∪ ciun 4972 dom cdm 5659 ran crn 5660 “ cima 5662 Oncon0 6357 Fn wfn 6531 ‘cfv 6536 𝑅1cr1 9781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |