| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaidfu2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for imaidfu2 49093. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| imaidfu.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| imaidfu.d | ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| imaidfu2lem | ⊢ (𝜑 → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaidfu.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | imaidfu.d | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (Base‘𝐷) = (Base‘𝐷)) | |
| 4 | 1, 2, 3 | idfu1sta 49083 | . . 3 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ (Base‘𝐷))) |
| 5 | 4 | imaeq1d 6019 | . 2 ⊢ (𝜑 → ((1st ‘𝐼) “ (Base‘𝐷)) = (( I ↾ (Base‘𝐷)) “ (Base‘𝐷))) |
| 6 | ssid 3966 | . . 3 ⊢ (Base‘𝐷) ⊆ (Base‘𝐷) | |
| 7 | resiima 6036 | . . 3 ⊢ ((Base‘𝐷) ⊆ (Base‘𝐷) → (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (( I ↾ (Base‘𝐷)) “ (Base‘𝐷)) = (Base‘𝐷) |
| 9 | 5, 8 | eqtrdi 2780 | 1 ⊢ (𝜑 → ((1st ‘𝐼) “ (Base‘𝐷)) = (Base‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 I cid 5525 ↾ cres 5633 “ cima 5634 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 Basecbs 17155 Func cfunc 17796 idfunccidfu 17797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-ixp 8848 df-cat 17609 df-cid 17610 df-homf 17611 df-func 17800 df-idfu 17801 |
| This theorem is referenced by: idsubc 49142 idfullsubc 49143 |
| Copyright terms: Public domain | W3C validator |