| Step | Hyp | Ref
| Expression |
| 1 | | ptpjcn.1 |
. . . 4
⊢ 𝑌 = ∪
𝐽 |
| 2 | | ptpjcn.2 |
. . . . . 6
⊢ 𝐽 =
(∏t‘𝐹) |
| 3 | 2 | ptuni 23537 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
| 4 | 3 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
| 5 | 1, 4 | eqtr4id 2790 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝑌 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
| 6 | 5 | mpteq1d 5215 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) = (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼))) |
| 7 | | pttop 23525 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) →
(∏t‘𝐹) ∈ Top) |
| 8 | 7 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (∏t‘𝐹) ∈ Top) |
| 9 | 2, 8 | eqeltrid 2839 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝐽 ∈ Top) |
| 10 | | ffvelcdm 7076 |
. . . 4
⊢ ((𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝐹‘𝐼) ∈ Top) |
| 11 | 10 | 3adant1 1130 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝐹‘𝐼) ∈ Top) |
| 12 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 13 | 12 | elixp 8923 |
. . . . . . . . 9
⊢ (𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
| 14 | 13 | simprbi 496 |
. . . . . . . 8
⊢ (𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
| 15 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐼 → (𝑥‘𝑘) = (𝑥‘𝐼)) |
| 16 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐼 → (𝐹‘𝑘) = (𝐹‘𝐼)) |
| 17 | 16 | unieqd 4901 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐼 → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝐼)) |
| 18 | 15, 17 | eleq12d 2829 |
. . . . . . . . 9
⊢ (𝑘 = 𝐼 → ((𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘) ↔ (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼))) |
| 19 | 18 | rspcva 3604 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
| 20 | 14, 19 | sylan2 593 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐴 ∧ 𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
| 21 | 20 | 3ad2antl3 1188 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
| 22 | 21 | fmpttd 7110 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)⟶∪ (𝐹‘𝐼)) |
| 23 | 5 | feq2d 6697 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ↔ (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)⟶∪ (𝐹‘𝐼))) |
| 24 | 22, 23 | mpbird 257 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼)) |
| 25 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
| 26 | 25 | ptbas 23522 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ∈ TopBases) |
| 27 | | bastg 22909 |
. . . . . . . . . . 11
⊢ ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
| 29 | | ffn 6711 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴) |
| 30 | 25 | ptval 23513 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
| 31 | 2, 30 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
| 32 | 29, 31 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
| 33 | 28, 32 | sseqtrrd 4001 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝐽) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝐽) |
| 35 | | eqid 2736 |
. . . . . . . . 9
⊢ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
| 36 | 25, 35 | ptpjpre2 23523 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) |
| 37 | 34, 36 | sseldd 3964 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
| 38 | 37 | expr 456 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝐼 ∈ 𝐴) → (𝑢 ∈ (𝐹‘𝐼) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽)) |
| 39 | 38 | ralrimiv 3132 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝐼 ∈ 𝐴) → ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
| 40 | 39 | 3impa 1109 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
| 41 | 24, 40 | jca 511 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ∧ ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽)) |
| 42 | | eqid 2736 |
. . . 4
⊢ ∪ (𝐹‘𝐼) = ∪ (𝐹‘𝐼) |
| 43 | 1, 42 | iscn2 23181 |
. . 3
⊢ ((𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹‘𝐼) ∈ Top) ∧ ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ∧ ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽))) |
| 44 | 9, 11, 41, 43 | syl21anbrc 1345 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) |
| 45 | 6, 44 | eqeltrd 2835 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) |