MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjcn Structured version   Visualization version   GIF version

Theorem ptpjcn 23531
Description: Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjcn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjcn
Dummy variables 𝑔 𝑘 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptpjcn.1 . . . 4 𝑌 = 𝐽
2 ptpjcn.2 . . . . . 6 𝐽 = (∏t𝐹)
32ptuni 23514 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1132 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
51, 4eqtr4id 2783 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝑌 = X𝑘𝐴 (𝐹𝑘))
65mpteq1d 5192 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) = (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)))
7 pttop 23502 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
873adant3 1132 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (∏t𝐹) ∈ Top)
92, 8eqeltrid 2832 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 ∈ Top)
10 ffvelcdm 7035 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
11103adant1 1130 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
12 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
1312elixp 8854 . . . . . . . . 9 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
1413simprbi 496 . . . . . . . 8 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
15 fveq2 6840 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑥𝑘) = (𝑥𝐼))
16 fveq2 6840 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
1716unieqd 4880 . . . . . . . . . 10 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
1815, 17eleq12d 2822 . . . . . . . . 9 (𝑘 = 𝐼 → ((𝑥𝑘) ∈ (𝐹𝑘) ↔ (𝑥𝐼) ∈ (𝐹𝐼)))
1918rspcva 3583 . . . . . . . 8 ((𝐼𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2014, 19sylan2 593 . . . . . . 7 ((𝐼𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
21203ad2antl3 1188 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2221fmpttd 7069 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼))
235feq2d 6654 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ↔ (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼)))
2422, 23mpbird 257 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼))
25 eqid 2729 . . . . . . . . . . . 12 {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}
2625ptbas 23499 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
27 bastg 22886 . . . . . . . . . . 11 ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
2826, 27syl 17 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
29 ffn 6670 . . . . . . . . . . 11 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
3025ptval 23490 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
312, 30eqtrid 2776 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3229, 31sylan2 593 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3328, 32sseqtrrd 3981 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
3433adantr 480 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
35 eqid 2729 . . . . . . . . 9 X𝑘𝐴 (𝐹𝑘) = X𝑘𝐴 (𝐹𝑘)
3625, 35ptpjpre2 23500 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))})
3734, 36sseldd 3944 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
3837expr 456 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → (𝑢 ∈ (𝐹𝐼) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
3938ralrimiv 3124 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
40393impa 1109 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
4124, 40jca 511 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
42 eqid 2729 . . . 4 (𝐹𝐼) = (𝐹𝐼)
431, 42iscn2 23158 . . 3 ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹𝐼) ∈ Top) ∧ ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)))
449, 11, 41, 43syl21anbrc 1345 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
456, 44eqeltrd 2828 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cdif 3908  wss 3911   cuni 4867  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Xcixp 8847  Fincfn 8895  topGenctg 17376  tcpt 17377  Topctop 22813  TopBasesctb 22865   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1o 8411  df-2o 8412  df-map 8778  df-ixp 8848  df-en 8896  df-fin 8899  df-fi 9338  df-topgen 17382  df-pt 17383  df-top 22814  df-topon 22831  df-bases 22866  df-cn 23147
This theorem is referenced by:  pthaus  23558  ptrescn  23559  xkopjcn  23576  pt1hmeo  23726  ptunhmeo  23728  tmdgsum  24015  symgtgp  24026  prdstmdd  24044  prdstgpd  24045  poimir  37640  broucube  37641
  Copyright terms: Public domain W3C validator