Step | Hyp | Ref
| Expression |
1 | | ptpjcn.1 |
. . . 4
⊢ 𝑌 = ∪
𝐽 |
2 | | ptpjcn.2 |
. . . . . 6
⊢ 𝐽 =
(∏t‘𝐹) |
3 | 2 | ptuni 22653 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
4 | 3 | 3adant3 1130 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐽) |
5 | 1, 4 | eqtr4id 2798 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝑌 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
6 | 5 | mpteq1d 5165 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) = (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼))) |
7 | | pttop 22641 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) →
(∏t‘𝐹) ∈ Top) |
8 | 7 | 3adant3 1130 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (∏t‘𝐹) ∈ Top) |
9 | 2, 8 | eqeltrid 2843 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → 𝐽 ∈ Top) |
10 | | ffvelrn 6941 |
. . . 4
⊢ ((𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝐹‘𝐼) ∈ Top) |
11 | 10 | 3adant1 1128 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝐹‘𝐼) ∈ Top) |
12 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
13 | 12 | elixp 8650 |
. . . . . . . . 9
⊢ (𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
14 | 13 | simprbi 496 |
. . . . . . . 8
⊢ (𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
15 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐼 → (𝑥‘𝑘) = (𝑥‘𝐼)) |
16 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐼 → (𝐹‘𝑘) = (𝐹‘𝐼)) |
17 | 16 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐼 → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝐼)) |
18 | 15, 17 | eleq12d 2833 |
. . . . . . . . 9
⊢ (𝑘 = 𝐼 → ((𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘) ↔ (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼))) |
19 | 18 | rspcva 3550 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑥‘𝑘) ∈ ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
20 | 14, 19 | sylan2 592 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐴 ∧ 𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
21 | 20 | 3ad2antl3 1185 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑥‘𝐼) ∈ ∪ (𝐹‘𝐼)) |
22 | 21 | fmpttd 6971 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)⟶∪ (𝐹‘𝐼)) |
23 | 5 | feq2d 6570 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ↔ (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)⟶∪ (𝐹‘𝐼))) |
24 | 22, 23 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼)) |
25 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
26 | 25 | ptbas 22638 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ∈ TopBases) |
27 | | bastg 22024 |
. . . . . . . . . . 11
⊢ ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
29 | | ffn 6584 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴) |
30 | 25 | ptval 22629 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
31 | 2, 30 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
32 | 29, 31 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
33 | 28, 32 | sseqtrrd 3958 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝐽) |
34 | 33 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝐽) |
35 | | eqid 2738 |
. . . . . . . . 9
⊢ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
36 | 25, 35 | ptpjpre2 22639 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑤 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) |
37 | 34, 36 | sseldd 3918 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑢 ∈ (𝐹‘𝐼))) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
38 | 37 | expr 456 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝐼 ∈ 𝐴) → (𝑢 ∈ (𝐹‘𝐼) → (◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽)) |
39 | 38 | ralrimiv 3106 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝐼 ∈ 𝐴) → ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
40 | 39 | 3impa 1108 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽) |
41 | 24, 40 | jca 511 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ∧ ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽)) |
42 | | eqid 2738 |
. . . 4
⊢ ∪ (𝐹‘𝐼) = ∪ (𝐹‘𝐼) |
43 | 1, 42 | iscn2 22297 |
. . 3
⊢ ((𝑥 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹‘𝐼) ∈ Top) ∧ ((𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)):𝑌⟶∪ (𝐹‘𝐼) ∧ ∀𝑢 ∈ (𝐹‘𝐼)(◡(𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) “ 𝑢) ∈ 𝐽))) |
44 | 9, 11, 41, 43 | syl21anbrc 1342 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) |
45 | 6, 44 | eqeltrd 2839 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) |