MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjcn Structured version   Visualization version   GIF version

Theorem ptpjcn 22762
Description: Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjcn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjcn
Dummy variables 𝑔 𝑘 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptpjcn.1 . . . 4 𝑌 = 𝐽
2 ptpjcn.2 . . . . . 6 𝐽 = (∏t𝐹)
32ptuni 22745 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1131 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
51, 4eqtr4id 2797 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝑌 = X𝑘𝐴 (𝐹𝑘))
65mpteq1d 5169 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) = (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)))
7 pttop 22733 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
873adant3 1131 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (∏t𝐹) ∈ Top)
92, 8eqeltrid 2843 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 ∈ Top)
10 ffvelrn 6959 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
11103adant1 1129 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
12 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
1312elixp 8692 . . . . . . . . 9 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
1413simprbi 497 . . . . . . . 8 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
15 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑥𝑘) = (𝑥𝐼))
16 fveq2 6774 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
1716unieqd 4853 . . . . . . . . . 10 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
1815, 17eleq12d 2833 . . . . . . . . 9 (𝑘 = 𝐼 → ((𝑥𝑘) ∈ (𝐹𝑘) ↔ (𝑥𝐼) ∈ (𝐹𝐼)))
1918rspcva 3559 . . . . . . . 8 ((𝐼𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2014, 19sylan2 593 . . . . . . 7 ((𝐼𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
21203ad2antl3 1186 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2221fmpttd 6989 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼))
235feq2d 6586 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ↔ (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼)))
2422, 23mpbird 256 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼))
25 eqid 2738 . . . . . . . . . . . 12 {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}
2625ptbas 22730 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
27 bastg 22116 . . . . . . . . . . 11 ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
2826, 27syl 17 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
29 ffn 6600 . . . . . . . . . . 11 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
3025ptval 22721 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
312, 30eqtrid 2790 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3229, 31sylan2 593 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3328, 32sseqtrrd 3962 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
3433adantr 481 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
35 eqid 2738 . . . . . . . . 9 X𝑘𝐴 (𝐹𝑘) = X𝑘𝐴 (𝐹𝑘)
3625, 35ptpjpre2 22731 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))})
3734, 36sseldd 3922 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
3837expr 457 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → (𝑢 ∈ (𝐹𝐼) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
3938ralrimiv 3102 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
40393impa 1109 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
4124, 40jca 512 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
42 eqid 2738 . . . 4 (𝐹𝐼) = (𝐹𝐼)
431, 42iscn2 22389 . . 3 ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹𝐼) ∈ Top) ∧ ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)))
449, 11, 41, 43syl21anbrc 1343 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
456, 44eqeltrd 2839 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  cdif 3884  wss 3887   cuni 4839  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Xcixp 8685  Fincfn 8733  topGenctg 17148  tcpt 17149  Topctop 22042  TopBasesctb 22095   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by:  pthaus  22789  ptrescn  22790  xkopjcn  22807  pt1hmeo  22957  ptunhmeo  22959  tmdgsum  23246  symgtgp  23257  prdstmdd  23275  prdstgpd  23276  poimir  35810  broucube  35811
  Copyright terms: Public domain W3C validator