MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjcn Structured version   Visualization version   GIF version

Theorem ptpjcn 23598
Description: Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptpjcn.1 𝑌 = 𝐽
ptpjcn.2 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptpjcn ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptpjcn
Dummy variables 𝑔 𝑘 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptpjcn.1 . . . 4 𝑌 = 𝐽
2 ptpjcn.2 . . . . . 6 𝐽 = (∏t𝐹)
32ptuni 23581 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
433adant3 1129 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → X𝑘𝐴 (𝐹𝑘) = 𝐽)
51, 4eqtr4id 2784 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝑌 = X𝑘𝐴 (𝐹𝑘))
65mpteq1d 5247 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) = (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)))
7 pttop 23569 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
873adant3 1129 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (∏t𝐹) ∈ Top)
92, 8eqeltrid 2829 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → 𝐽 ∈ Top)
10 ffvelcdm 7094 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
11103adant1 1127 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝐹𝐼) ∈ Top)
12 vex 3465 . . . . . . . . . 10 𝑥 ∈ V
1312elixp 8932 . . . . . . . . 9 (𝑥X𝑘𝐴 (𝐹𝑘) ↔ (𝑥 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)))
1413simprbi 495 . . . . . . . 8 (𝑥X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘))
15 fveq2 6900 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝑥𝑘) = (𝑥𝐼))
16 fveq2 6900 . . . . . . . . . . 11 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
1716unieqd 4925 . . . . . . . . . 10 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
1815, 17eleq12d 2819 . . . . . . . . 9 (𝑘 = 𝐼 → ((𝑥𝑘) ∈ (𝐹𝑘) ↔ (𝑥𝐼) ∈ (𝐹𝐼)))
1918rspcva 3605 . . . . . . . 8 ((𝐼𝐴 ∧ ∀𝑘𝐴 (𝑥𝑘) ∈ (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2014, 19sylan2 591 . . . . . . 7 ((𝐼𝐴𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
21203ad2antl3 1184 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) ∧ 𝑥X𝑘𝐴 (𝐹𝑘)) → (𝑥𝐼) ∈ (𝐹𝐼))
2221fmpttd 7128 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼))
235feq2d 6713 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ↔ (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):X𝑘𝐴 (𝐹𝑘)⟶ (𝐹𝐼)))
2422, 23mpbird 256 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼))
25 eqid 2725 . . . . . . . . . . . 12 {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} = {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}
2625ptbas 23566 . . . . . . . . . . 11 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
27 bastg 22952 . . . . . . . . . . 11 ({𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
2826, 27syl 17 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
29 ffn 6727 . . . . . . . . . . 11 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
3025ptval 23557 . . . . . . . . . . . 12 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
312, 30eqtrid 2777 . . . . . . . . . . 11 ((𝐴𝑉𝐹 Fn 𝐴) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3229, 31sylan2 591 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))}))
3328, 32sseqtrrd 4020 . . . . . . . . 9 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
3433adantr 479 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝐽)
35 eqid 2725 . . . . . . . . 9 X𝑘𝐴 (𝐹𝑘) = X𝑘𝐴 (𝐹𝑘)
3625, 35ptpjpre2 23567 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ {𝑤 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑤 = X𝑦𝐴 (𝑔𝑦))})
3734, 36sseldd 3979 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑢 ∈ (𝐹𝐼))) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
3837expr 455 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → (𝑢 ∈ (𝐹𝐼) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
3938ralrimiv 3134 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
40393impa 1107 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)
4124, 40jca 510 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽))
42 eqid 2725 . . . 4 (𝐹𝐼) = (𝐹𝐼)
431, 42iscn2 23225 . . 3 ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)) ↔ ((𝐽 ∈ Top ∧ (𝐹𝐼) ∈ Top) ∧ ((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)):𝑌 (𝐹𝐼) ∧ ∀𝑢 ∈ (𝐹𝐼)((𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) “ 𝑢) ∈ 𝐽)))
449, 11, 41, 43syl21anbrc 1341 . 2 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥X𝑘𝐴 (𝐹𝑘) ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
456, 44eqeltrd 2825 1 ((𝐴𝑉𝐹:𝐴⟶Top ∧ 𝐼𝐴) → (𝑥𝑌 ↦ (𝑥𝐼)) ∈ (𝐽 Cn (𝐹𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wral 3050  wrex 3059  cdif 3943  wss 3946   cuni 4912  cmpt 5235  ccnv 5680  cima 5684   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7423  Xcixp 8925  Fincfn 8973  topGenctg 17447  tcpt 17448  Topctop 22878  TopBasesctb 22931   Cn ccn 23211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1o 8495  df-2o 8496  df-map 8856  df-ixp 8926  df-en 8974  df-fin 8977  df-fi 9450  df-topgen 17453  df-pt 17454  df-top 22879  df-topon 22896  df-bases 22932  df-cn 23214
This theorem is referenced by:  pthaus  23625  ptrescn  23626  xkopjcn  23643  pt1hmeo  23793  ptunhmeo  23795  tmdgsum  24082  symgtgp  24093  prdstmdd  24111  prdstgpd  24112  poimir  37302  broucube  37303
  Copyright terms: Public domain W3C validator