MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim2 Structured version   Visualization version   GIF version

Theorem isgim2 19283
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 23767. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
isgim2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))

Proof of Theorem isgim2
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2737 . . 3 (Base‘𝑆) = (Base‘𝑆)
31, 2isgim 19280 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
41, 2ghmf1o 19266 . . 3 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
54pm5.32i 574 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
63, 5bitri 275 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ccnv 5684  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Basecbs 17247   GrpHom cghm 19230   GrpIso cgim 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ghm 19231  df-gim 19277
This theorem is referenced by:  gimcnv  19285  gimco  19286  gicref  19290  pi1xfrgim  25091
  Copyright terms: Public domain W3C validator