Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isgim2 | Structured version Visualization version GIF version |
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 22910. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
isgim2 | ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | 1, 2 | isgim 18878 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
4 | 1, 2 | ghmf1o 18864 | . . 3 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) ↔ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
5 | 4 | pm5.32i 575 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
6 | 3, 5 | bitri 274 | 1 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ◡ccnv 5588 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 GrpHom cghm 18831 GrpIso cgim 18873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-ghm 18832 df-gim 18875 |
This theorem is referenced by: gimcnv 18883 gimco 18884 gicref 18887 pi1xfrgim 24221 |
Copyright terms: Public domain | W3C validator |