MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim2 Structured version   Visualization version   GIF version

Theorem isgim2 18881
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 22910. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
isgim2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))

Proof of Theorem isgim2
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
31, 2isgim 18878 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
41, 2ghmf1o 18864 . . 3 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
54pm5.32i 575 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
63, 5bitri 274 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  ccnv 5588  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912   GrpHom cghm 18831   GrpIso cgim 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ghm 18832  df-gim 18875
This theorem is referenced by:  gimcnv  18883  gimco  18884  gicref  18887  pi1xfrgim  24221
  Copyright terms: Public domain W3C validator