MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim2 Structured version   Visualization version   GIF version

Theorem isgim2 19305
Description: A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 23788. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
isgim2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))

Proof of Theorem isgim2
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2740 . . 3 (Base‘𝑆) = (Base‘𝑆)
31, 2isgim 19302 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
41, 2ghmf1o 19288 . . 3 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
54pm5.32i 574 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
63, 5bitri 275 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258   GrpHom cghm 19252   GrpIso cgim 19297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253  df-gim 19299
This theorem is referenced by:  gimcnv  19307  gimco  19308  gicref  19312  pi1xfrgim  25110
  Copyright terms: Public domain W3C validator