![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subggim | Structured version Visualization version GIF version |
Description: Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
subgim.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subggim | ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gimghm 19187 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
3 | ghmima 19160 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) | |
4 | 2, 3 | sylan 579 | . 2 ⊢ (((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) |
5 | subgim.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | 5, 6 | gimf1o 19186 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→(Base‘𝑆)) |
8 | f1of1 6825 | . . . . . 6 ⊢ (𝐹:𝐵–1-1-onto→(Base‘𝑆) → 𝐹:𝐵–1-1→(Base‘𝑆)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1→(Base‘𝑆)) |
10 | f1imacnv 6842 | . . . . 5 ⊢ ((𝐹:𝐵–1-1→(Base‘𝑆) ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) | |
11 | 9, 10 | sylan 579 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
12 | 11 | adantr 480 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
13 | ghmpreima 19161 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (SubGrp‘𝑅)) | |
14 | 2, 13 | sylan 579 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) → (◡𝐹 “ (𝐹 “ 𝐴)) ∈ (SubGrp‘𝑅)) |
15 | 12, 14 | eqeltrrd 2828 | . 2 ⊢ (((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) ∧ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆)) → 𝐴 ∈ (SubGrp‘𝑅)) |
16 | 4, 15 | impbida 798 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ◡ccnv 5668 “ cima 5672 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7404 Basecbs 17151 SubGrpcsubg 19045 GrpHom cghm 19136 GrpIso cgim 19180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-subg 19048 df-ghm 19137 df-gim 19182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |