Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrgim Structured version   Visualization version   GIF version

Theorem pi1xfrgim 23670
 Description: The mapping 𝐺 between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
Assertion
Ref Expression
pi1xfrgim (𝜑𝐺 ∈ (𝑃 GrpIso 𝑄))
Distinct variable groups:   𝑥,𝑔,𝐵   𝑔,𝐹,𝑥   𝑔,𝐼,𝑥   𝜑,𝑔,𝑥   𝑔,𝐽,𝑥   𝑃,𝑔,𝑥   𝑄,𝑔,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝑋(𝑥,𝑔)

Proof of Theorem pi1xfrgim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . 3 𝑃 = (𝐽 π1 (𝐹‘0))
2 pi1xfr.q . . 3 𝑄 = (𝐽 π1 (𝐹‘1))
3 pi1xfr.b . . 3 𝐵 = (Base‘𝑃)
4 pi1xfr.g . . 3 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
5 pi1xfr.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 pi1xfr.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1xfr.i . . 3 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
81, 2, 3, 4, 5, 6, 7pi1xfr 23667 . 2 (𝜑𝐺 ∈ (𝑃 GrpHom 𝑄))
9 eqid 2798 . . . 4 ran (𝑦 (Base‘𝑄) ↦ ⟨[𝑦]( ≃ph𝐽), [(𝐹(*𝑝𝐽)(𝑦(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran (𝑦 (Base‘𝑄) ↦ ⟨[𝑦]( ≃ph𝐽), [(𝐹(*𝑝𝐽)(𝑦(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
101, 2, 3, 4, 5, 6, 7, 9pi1xfrcnv 23669 . . 3 (𝜑 → (𝐺 = ran (𝑦 (Base‘𝑄) ↦ ⟨[𝑦]( ≃ph𝐽), [(𝐹(*𝑝𝐽)(𝑦(*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∧ 𝐺 ∈ (𝑄 GrpHom 𝑃)))
1110simprd 499 . 2 (𝜑𝐺 ∈ (𝑄 GrpHom 𝑃))
12 isgim2 18400 . 2 (𝐺 ∈ (𝑃 GrpIso 𝑄) ↔ (𝐺 ∈ (𝑃 GrpHom 𝑄) ∧ 𝐺 ∈ (𝑄 GrpHom 𝑃)))
138, 11, 12sylanbrc 586 1 (𝜑𝐺 ∈ (𝑃 GrpIso 𝑄))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ⟨cop 4531  ∪ cuni 4800   ↦ cmpt 5110  ◡ccnv 5518  ran crn 5520  ‘cfv 6324  (class class class)co 7135  [cec 8272  0cc0 10528  1c1 10529   − cmin 10861  [,]cicc 12731  Basecbs 16477   GrpHom cghm 18350   GrpIso cgim 18392  TopOnctopon 21522   Cn ccn 21836  IIcii 23487   ≃phcphtpc 23581  *𝑝cpco 23612   π1 cpi1 23615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-ec 8276  df-qs 8280  df-map 8393  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-icc 12735  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-qus 16776  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-mulg 18220  df-ghm 18351  df-gim 18394  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-cnfld 20095  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-cn 21839  df-cnp 21840  df-tx 22174  df-hmeo 22367  df-xms 22934  df-ms 22935  df-tms 22936  df-ii 23489  df-htpy 23582  df-phtpy 23583  df-phtpc 23604  df-pco 23617  df-om1 23618  df-pi1 23620 This theorem is referenced by:  pconnpi1  32609
 Copyright terms: Public domain W3C validator