| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lanval | Structured version Visualization version GIF version | ||
| Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| lanval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| lanval.s | ⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| lanval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| lanval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| lanval.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| Ref | Expression |
|---|---|
| lanval | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋) = (𝐾(𝑅UP𝑆)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lanval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 2 | lanval.s | . . 3 ⊢ 𝑆 = (𝐶 FuncCat 𝐸) | |
| 3 | lanval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | func1st2nd 48936 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 5 | 4 | funcrcl2 48937 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | 4 | funcrcl3 48938 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | lanval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) | |
| 8 | 7 | func1st2nd 48936 | . . . 4 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 9 | 8 | funcrcl3 48938 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 10 | 1, 2, 5, 6, 9 | lanfval 49351 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉Lan𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅UP𝑆)𝑥))) |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 12 | 11 | oveq2d 7416 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = (〈𝐷, 𝐸〉 −∘F 𝐹)) |
| 13 | lanval.k | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| 15 | 12, 14 | eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = 𝐾) |
| 16 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 17 | 15, 16 | oveq12d 7418 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅UP𝑆)𝑥) = (𝐾(𝑅UP𝑆)𝑋)) |
| 18 | ovexd 7435 | . 2 ⊢ (𝜑 → (𝐾(𝑅UP𝑆)𝑋) ∈ V) | |
| 19 | 10, 17, 3, 7, 18 | ovmpod 7554 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉Lan𝐸)𝑋) = (𝐾(𝑅UP𝑆)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 ‘cfv 6528 (class class class)co 7400 1st c1st 7981 2nd c2nd 7982 Catccat 17663 Func cfunc 17854 FuncCat cfuc 17945 UPcup 48974 −∘F cprcof 49147 Lanclan 49343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-func 17858 df-lan 49345 |
| This theorem is referenced by: rellan 49359 islan 49361 lanval2 49363 lanup 49376 |
| Copyright terms: Public domain | W3C validator |