| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lanval | Structured version Visualization version GIF version | ||
| Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| lanval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| lanval.s | ⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| lanval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| lanval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| lanval.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| Ref | Expression |
|---|---|
| lanval | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lanval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 2 | lanval.s | . . 3 ⊢ 𝑆 = (𝐶 FuncCat 𝐸) | |
| 3 | lanval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | func1st2nd 49187 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 5 | 4 | funcrcl2 49190 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | 4 | funcrcl3 49191 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | lanval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) | |
| 8 | 7 | func1st2nd 49187 | . . . 4 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 9 | 8 | funcrcl3 49191 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 10 | 1, 2, 5, 6, 9 | lanfval 49724 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅 UP 𝑆)𝑥))) |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 12 | 11 | oveq2d 7362 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = (〈𝐷, 𝐸〉 −∘F 𝐹)) |
| 13 | lanval.k | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| 15 | 12, 14 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = 𝐾) |
| 16 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 17 | 15, 16 | oveq12d 7364 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅 UP 𝑆)𝑥) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| 18 | ovexd 7381 | . 2 ⊢ (𝜑 → (𝐾(𝑅 UP 𝑆)𝑋) ∈ V) | |
| 19 | 10, 17, 3, 7, 18 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Catccat 17570 Func cfunc 17761 FuncCat cfuc 17852 UP cup 49284 −∘F cprcof 49484 Lan clan 49716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17765 df-lan 49718 |
| This theorem is referenced by: rellan 49734 islan 49736 lanval2 49738 lanup 49752 |
| Copyright terms: Public domain | W3C validator |