Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanval Structured version   Visualization version   GIF version

Theorem lanval 49355
Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
lanval.r 𝑅 = (𝐷 FuncCat 𝐸)
lanval.s 𝑆 = (𝐶 FuncCat 𝐸)
lanval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
lanval.x (𝜑𝑋 ∈ (𝐶 Func 𝐸))
lanval.k (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝐾)
Assertion
Ref Expression
lanval (𝜑 → (𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋) = (𝐾(𝑅UP𝑆)𝑋))

Proof of Theorem lanval
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lanval.r . . 3 𝑅 = (𝐷 FuncCat 𝐸)
2 lanval.s . . 3 𝑆 = (𝐶 FuncCat 𝐸)
3 lanval.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
43func1st2nd 48936 . . . 4 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
54funcrcl2 48937 . . 3 (𝜑𝐶 ∈ Cat)
64funcrcl3 48938 . . 3 (𝜑𝐷 ∈ Cat)
7 lanval.x . . . . 5 (𝜑𝑋 ∈ (𝐶 Func 𝐸))
87func1st2nd 48936 . . . 4 (𝜑 → (1st𝑋)(𝐶 Func 𝐸)(2nd𝑋))
98funcrcl3 48938 . . 3 (𝜑𝐸 ∈ Cat)
101, 2, 5, 6, 9lanfval 49351 . 2 (𝜑 → (⟨𝐶, 𝐷⟩Lan𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅UP𝑆)𝑥)))
11 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
1211oveq2d 7416 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (⟨𝐷, 𝐸⟩ −∘F 𝑓) = (⟨𝐷, 𝐸⟩ −∘F 𝐹))
13 lanval.k . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝐾)
1413adantr 480 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = 𝐾)
1512, 14eqtrd 2769 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (⟨𝐷, 𝐸⟩ −∘F 𝑓) = 𝐾)
16 simprr 772 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
1715, 16oveq12d 7418 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((⟨𝐷, 𝐸⟩ −∘F 𝑓)(𝑅UP𝑆)𝑥) = (𝐾(𝑅UP𝑆)𝑋))
18 ovexd 7435 . 2 (𝜑 → (𝐾(𝑅UP𝑆)𝑋) ∈ V)
1910, 17, 3, 7, 18ovmpod 7554 1 (𝜑 → (𝐹(⟨𝐶, 𝐷⟩Lan𝐸)𝑋) = (𝐾(𝑅UP𝑆)𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982  Catccat 17663   Func cfunc 17854   FuncCat cfuc 17945  UPcup 48974   −∘F cprcof 49147  Lanclan 49343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858  df-lan 49345
This theorem is referenced by:  rellan  49359  islan  49361  lanval2  49363  lanup  49376
  Copyright terms: Public domain W3C validator