| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lanval | Structured version Visualization version GIF version | ||
| Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| lanval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| lanval.s | ⊢ 𝑆 = (𝐶 FuncCat 𝐸) |
| lanval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| lanval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) |
| lanval.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| Ref | Expression |
|---|---|
| lanval | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lanval.r | . . 3 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 2 | lanval.s | . . 3 ⊢ 𝑆 = (𝐶 FuncCat 𝐸) | |
| 3 | lanval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | func1st2nd 49055 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 5 | 4 | funcrcl2 49058 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | 4 | funcrcl3 49059 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | lanval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐸)) | |
| 8 | 7 | func1st2nd 49055 | . . . 4 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐸)(2nd ‘𝑋)) |
| 9 | 8 | funcrcl3 49059 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 10 | 1, 2, 5, 6, 9 | lanfval 49592 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅 UP 𝑆)𝑥))) |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
| 12 | 11 | oveq2d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = (〈𝐷, 𝐸〉 −∘F 𝐹)) |
| 13 | lanval.k | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 𝐾) |
| 15 | 12, 14 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝑓) = 𝐾) |
| 16 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
| 17 | 15, 16 | oveq12d 7407 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((〈𝐷, 𝐸〉 −∘F 𝑓)(𝑅 UP 𝑆)𝑥) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| 18 | ovexd 7424 | . 2 ⊢ (𝜑 → (𝐾(𝑅 UP 𝑆)𝑋) ∈ V) | |
| 19 | 10, 17, 3, 7, 18 | ovmpod 7543 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Lan 𝐸)𝑋) = (𝐾(𝑅 UP 𝑆)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4597 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Catccat 17631 Func cfunc 17822 FuncCat cfuc 17913 UP cup 49152 −∘F cprcof 49352 Lan clan 49584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-func 17826 df-lan 49586 |
| This theorem is referenced by: rellan 49602 islan 49604 lanval2 49606 lanup 49620 |
| Copyright terms: Public domain | W3C validator |