MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgsubrng Structured version   Visualization version   GIF version

Theorem subrgsubrng 20472
Description: A subring of a unital ring is a subring of a non-unital ring. (Contributed by AV, 30-Mar-2025.)
Assertion
Ref Expression
subrgsubrng (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubRng‘𝑅))

Proof of Theorem subrgsubrng
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . 3 (1r𝑅) = (1r𝑅)
31, 2issubrg 20465 . 2 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)))
4 ringrng 20177 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
54ad2antrr 723 . . 3 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)) → 𝑅 ∈ Rng)
6 ringrng 20177 . . . 4 ((𝑅s 𝐴) ∈ Ring → (𝑅s 𝐴) ∈ Rng)
76ad2antlr 724 . . 3 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Rng)
8 simprl 768 . . 3 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)) → 𝐴 ⊆ (Base‘𝑅))
91issubrng 20439 . . 3 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴 ⊆ (Base‘𝑅)))
105, 7, 8, 9syl3anbrc 1342 . 2 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅))
113, 10sylbi 216 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wss 3948  cfv 6543  (class class class)co 7412  Basecbs 17151  s cress 17180  Rngcrng 20050  1rcur 20079  Ringcrg 20131  SubRngcsubrng 20437  SubRingcsubrg 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-0g 17394  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-grp 18861  df-minusg 18862  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-subrng 20438  df-subrg 20463
This theorem is referenced by:  subrgmcl  20478
  Copyright terms: Public domain W3C validator