MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngpropd Structured version   Visualization version   GIF version

Theorem subrngpropd 20484
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrngpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 subrngpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
3 subrngpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 subrngpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4rngpropd 20090 . . . 4 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
61ineq2d 4186 . . . . . 6 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
7 eqid 2730 . . . . . . . 8 (𝐾s 𝑠) = (𝐾s 𝑠)
8 eqid 2730 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
97, 8ressbas 17213 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
109elv 3455 . . . . . 6 (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠))
116, 10eqtrdi 2781 . . . . 5 (𝜑 → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
122ineq2d 4186 . . . . . 6 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
13 eqid 2730 . . . . . . . 8 (𝐿s 𝑠) = (𝐿s 𝑠)
14 eqid 2730 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
1513, 14ressbas 17213 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
1615elv 3455 . . . . . 6 (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠))
1712, 16eqtrdi 2781 . . . . 5 (𝜑 → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
18 elinel2 4168 . . . . . . 7 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
19 elinel2 4168 . . . . . . 7 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2018, 19anim12i 613 . . . . . 6 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
21 eqid 2730 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
227, 21ressplusg 17261 . . . . . . . . 9 (𝑠 ∈ V → (+g𝐾) = (+g‘(𝐾s 𝑠)))
2322elv 3455 . . . . . . . 8 (+g𝐾) = (+g‘(𝐾s 𝑠))
2423oveqi 7403 . . . . . . 7 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦)
25 eqid 2730 . . . . . . . . . 10 (+g𝐿) = (+g𝐿)
2613, 25ressplusg 17261 . . . . . . . . 9 (𝑠 ∈ V → (+g𝐿) = (+g‘(𝐿s 𝑠)))
2726elv 3455 . . . . . . . 8 (+g𝐿) = (+g‘(𝐿s 𝑠))
2827oveqi 7403 . . . . . . 7 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦)
293, 24, 283eqtr3g 2788 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3020, 29sylan2 593 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
31 eqid 2730 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
327, 31ressmulr 17277 . . . . . . . . 9 (𝑠 ∈ V → (.r𝐾) = (.r‘(𝐾s 𝑠)))
3332elv 3455 . . . . . . . 8 (.r𝐾) = (.r‘(𝐾s 𝑠))
3433oveqi 7403 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦)
35 eqid 2730 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3613, 35ressmulr 17277 . . . . . . . . 9 (𝑠 ∈ V → (.r𝐿) = (.r‘(𝐿s 𝑠)))
3736elv 3455 . . . . . . . 8 (.r𝐿) = (.r‘(𝐿s 𝑠))
3837oveqi 7403 . . . . . . 7 (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦)
394, 34, 383eqtr3g 2788 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4020, 39sylan2 593 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4111, 17, 30, 40rngpropd 20090 . . . 4 (𝜑 → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
421, 2eqtr3d 2767 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4342sseq2d 3982 . . . 4 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
445, 41, 433anbi123d 1438 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
458issubrng 20463 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
4614issubrng 20463 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
4744, 45, 463bitr4g 314 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
4847eqrdv 2728 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Rngcrng 20068  SubRngcsubrng 20461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-subrng 20462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator