Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrngpropd Structured version   Visualization version   GIF version

Theorem subrngpropd 46747
Description: If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
subrngpropd.1 (𝜑𝐵 = (Base‘𝐾))
subrngpropd.2 (𝜑𝐵 = (Base‘𝐿))
subrngpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
subrngpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
subrngpropd (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem subrngpropd
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 subrngpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 subrngpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
3 subrngpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 subrngpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4rngpropd 46673 . . . 4 (𝜑 → (𝐾 ∈ Rng ↔ 𝐿 ∈ Rng))
61ineq2d 4213 . . . . . 6 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐾)))
7 eqid 2733 . . . . . . . 8 (𝐾s 𝑠) = (𝐾s 𝑠)
8 eqid 2733 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
97, 8ressbas 17179 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠)))
109elv 3481 . . . . . 6 (𝑠 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝑠))
116, 10eqtrdi 2789 . . . . 5 (𝜑 → (𝑠𝐵) = (Base‘(𝐾s 𝑠)))
122ineq2d 4213 . . . . . 6 (𝜑 → (𝑠𝐵) = (𝑠 ∩ (Base‘𝐿)))
13 eqid 2733 . . . . . . . 8 (𝐿s 𝑠) = (𝐿s 𝑠)
14 eqid 2733 . . . . . . . 8 (Base‘𝐿) = (Base‘𝐿)
1513, 14ressbas 17179 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠)))
1615elv 3481 . . . . . 6 (𝑠 ∩ (Base‘𝐿)) = (Base‘(𝐿s 𝑠))
1712, 16eqtrdi 2789 . . . . 5 (𝜑 → (𝑠𝐵) = (Base‘(𝐿s 𝑠)))
18 elinel2 4197 . . . . . . 7 (𝑥 ∈ (𝑠𝐵) → 𝑥𝐵)
19 elinel2 4197 . . . . . . 7 (𝑦 ∈ (𝑠𝐵) → 𝑦𝐵)
2018, 19anim12i 614 . . . . . 6 ((𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵)) → (𝑥𝐵𝑦𝐵))
21 eqid 2733 . . . . . . . . . 10 (+g𝐾) = (+g𝐾)
227, 21ressplusg 17235 . . . . . . . . 9 (𝑠 ∈ V → (+g𝐾) = (+g‘(𝐾s 𝑠)))
2322elv 3481 . . . . . . . 8 (+g𝐾) = (+g‘(𝐾s 𝑠))
2423oveqi 7422 . . . . . . 7 (𝑥(+g𝐾)𝑦) = (𝑥(+g‘(𝐾s 𝑠))𝑦)
25 eqid 2733 . . . . . . . . . 10 (+g𝐿) = (+g𝐿)
2613, 25ressplusg 17235 . . . . . . . . 9 (𝑠 ∈ V → (+g𝐿) = (+g‘(𝐿s 𝑠)))
2726elv 3481 . . . . . . . 8 (+g𝐿) = (+g‘(𝐿s 𝑠))
2827oveqi 7422 . . . . . . 7 (𝑥(+g𝐿)𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦)
293, 24, 283eqtr3g 2796 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
3020, 29sylan2 594 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(+g‘(𝐾s 𝑠))𝑦) = (𝑥(+g‘(𝐿s 𝑠))𝑦))
31 eqid 2733 . . . . . . . . . 10 (.r𝐾) = (.r𝐾)
327, 31ressmulr 17252 . . . . . . . . 9 (𝑠 ∈ V → (.r𝐾) = (.r‘(𝐾s 𝑠)))
3332elv 3481 . . . . . . . 8 (.r𝐾) = (.r‘(𝐾s 𝑠))
3433oveqi 7422 . . . . . . 7 (𝑥(.r𝐾)𝑦) = (𝑥(.r‘(𝐾s 𝑠))𝑦)
35 eqid 2733 . . . . . . . . . 10 (.r𝐿) = (.r𝐿)
3613, 35ressmulr 17252 . . . . . . . . 9 (𝑠 ∈ V → (.r𝐿) = (.r‘(𝐿s 𝑠)))
3736elv 3481 . . . . . . . 8 (.r𝐿) = (.r‘(𝐿s 𝑠))
3837oveqi 7422 . . . . . . 7 (𝑥(.r𝐿)𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦)
394, 34, 383eqtr3g 2796 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4020, 39sylan2 594 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑠𝐵) ∧ 𝑦 ∈ (𝑠𝐵))) → (𝑥(.r‘(𝐾s 𝑠))𝑦) = (𝑥(.r‘(𝐿s 𝑠))𝑦))
4111, 17, 30, 40rngpropd 46673 . . . 4 (𝜑 → ((𝐾s 𝑠) ∈ Rng ↔ (𝐿s 𝑠) ∈ Rng))
421, 2eqtr3d 2775 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4342sseq2d 4015 . . . 4 (𝜑 → (𝑠 ⊆ (Base‘𝐾) ↔ 𝑠 ⊆ (Base‘𝐿)))
445, 41, 433anbi123d 1437 . . 3 (𝜑 → ((𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿))))
458issubrng 46726 . . 3 (𝑠 ∈ (SubRng‘𝐾) ↔ (𝐾 ∈ Rng ∧ (𝐾s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐾)))
4614issubrng 46726 . . 3 (𝑠 ∈ (SubRng‘𝐿) ↔ (𝐿 ∈ Rng ∧ (𝐿s 𝑠) ∈ Rng ∧ 𝑠 ⊆ (Base‘𝐿)))
4744, 45, 463bitr4g 314 . 2 (𝜑 → (𝑠 ∈ (SubRng‘𝐾) ↔ 𝑠 ∈ (SubRng‘𝐿)))
4847eqrdv 2731 1 (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cin 3948  wss 3949  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  +gcplusg 17197  .rcmulr 17198  Rngcrng 46648  SubRngcsubrng 46724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-cmn 19650  df-abl 19651  df-mgp 19988  df-rng 46649  df-subrng 46725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator