MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng2idlsubrng Structured version   Visualization version   GIF version

Theorem rng2idlsubrng 21195
Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rng2idlsubrng.r (𝜑𝑅 ∈ Rng)
rng2idlsubrng.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlsubrng.u (𝜑 → (𝑅s 𝐼) ∈ Rng)
Assertion
Ref Expression
rng2idlsubrng (𝜑𝐼 ∈ (SubRng‘𝑅))

Proof of Theorem rng2idlsubrng
StepHypRef Expression
1 rng2idlsubrng.r . 2 (𝜑𝑅 ∈ Rng)
2 rng2idlsubrng.u . 2 (𝜑 → (𝑅s 𝐼) ∈ Rng)
3 rng2idlsubrng.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
4 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2730 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
64, 52idlss 21192 . . 3 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
73, 6syl 17 . 2 (𝜑𝐼 ⊆ (Base‘𝑅))
84issubrng 20455 . 2 (𝐼 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐼) ∈ Rng ∧ 𝐼 ⊆ (Base‘𝑅)))
91, 2, 7, 8syl3anbrc 1344 1 (𝜑𝐼 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wss 3900  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  Rngcrng 20063  SubRngcsubrng 20453  2Idealc2idl 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-sca 17169  df-vsca 17170  df-ip 17171  df-subrng 20454  df-lss 20858  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-2idl 21180
This theorem is referenced by:  rng2idlnsg  21196  rng2idl0  21197  rng2idlsubgsubrng  21198  rngqiprnglinlem2  21222  rngqiprng  21226  rng2idl1cntr  21235
  Copyright terms: Public domain W3C validator