| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkonwlk1l | Structured version Visualization version GIF version | ||
| Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkonwlk1l.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| wlkonwlk1l | ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkonwlk1l.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 2 | eqidd 2734 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘0)) | |
| 3 | wlklenvm1 29602 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
| 4 | 3 | fveq2d 6832 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (𝑃‘((♯‘𝑃) − 1))) |
| 5 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 6 | 5 | wlkpwrd 29598 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 7 | lsw 14473 | . . . . 5 ⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
| 9 | 4, 8 | eqtr4d 2771 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
| 10 | 1, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
| 11 | wlkcl 29596 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 12 | nn0p1nn 12427 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ) | |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) + 1) ∈ ℕ) |
| 14 | wlklenvp1 29599 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
| 15 | 13, 6, 14 | jca32 515 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)))) |
| 16 | fstwrdne0 14465 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (𝑃‘0) ∈ (Vtx‘𝐺)) | |
| 17 | lswlgt0cl 14478 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (lastS‘𝑃) ∈ (Vtx‘𝐺)) | |
| 18 | 16, 17 | jca 511 | . . . . . 6 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
| 19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
| 20 | eqid 2733 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 21 | 20 | wlkf 29595 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 22 | wrdv 14438 | . . . . . 6 ⊢ (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹 ∈ Word V) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word V) |
| 24 | 19, 23, 6 | jca32 515 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
| 25 | 1, 24 | syl 17 | . . 3 ⊢ (𝜑 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
| 26 | 5 | iswlkon 29636 | . . 3 ⊢ ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
| 28 | 1, 2, 10, 27 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ♯chash 14239 Word cword 14422 lastSclsw 14471 Vtxcvtx 28976 iEdgciedg 28977 Walkscwlks 29577 WalksOncwlkson 29578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 df-wlks 29580 df-wlkson 29581 |
| This theorem is referenced by: 3wlkond 30153 |
| Copyright terms: Public domain | W3C validator |