![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkonwlk1l | Structured version Visualization version GIF version |
Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkonwlk1l.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
Ref | Expression |
---|---|
wlkonwlk1l | ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkonwlk1l.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | eqidd 2827 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘0)) | |
3 | wlklenvm1 26920 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
4 | 3 | fveq2d 6438 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (𝑃‘((♯‘𝑃) − 1))) |
5 | eqid 2826 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
6 | 5 | wlkpwrd 26916 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
7 | lsw 13625 | . . . . 5 ⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
9 | 4, 8 | eqtr4d 2865 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
10 | 1, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
11 | wlkcl 26914 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
12 | nn0p1nn 11660 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) + 1) ∈ ℕ) |
14 | wlklenvp1 26917 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
15 | 13, 6, 14 | jca32 513 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)))) |
16 | fstwrdne0 13617 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (𝑃‘0) ∈ (Vtx‘𝐺)) | |
17 | lswlgt0cl 13630 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (lastS‘𝑃) ∈ (Vtx‘𝐺)) | |
18 | 16, 17 | jca 509 | . . . . . 6 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
20 | eqid 2826 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
21 | 20 | wlkf 26913 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
22 | wrdv 13590 | . . . . . 6 ⊢ (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹 ∈ Word V) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word V) |
24 | 19, 23, 6 | jca32 513 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
25 | 1, 24 | syl 17 | . . 3 ⊢ (𝜑 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
26 | 5 | iswlkon 26955 | . . 3 ⊢ ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
28 | 1, 2, 10, 27 | mpbir3and 1448 | 1 ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 Vcvv 3415 class class class wbr 4874 dom cdm 5343 ‘cfv 6124 (class class class)co 6906 0cc0 10253 1c1 10254 + caddc 10256 − cmin 10586 ℕcn 11351 ℕ0cn0 11619 ♯chash 13411 Word cword 13575 lastSclsw 13623 Vtxcvtx 26295 iEdgciedg 26296 Walkscwlks 26895 WalksOncwlkson 26896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-lsw 13624 df-wlks 26898 df-wlkson 26899 |
This theorem is referenced by: 3wlkond 27548 |
Copyright terms: Public domain | W3C validator |