| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkonwlk1l | Structured version Visualization version GIF version | ||
| Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkonwlk1l.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Ref | Expression |
|---|---|
| wlkonwlk1l | ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkonwlk1l.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → (𝑃‘0) = (𝑃‘0)) | |
| 3 | wlklenvm1 29598 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | |
| 4 | 3 | fveq2d 6826 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (𝑃‘((♯‘𝑃) − 1))) |
| 5 | eqid 2731 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 6 | 5 | wlkpwrd 29594 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 7 | lsw 14468 | . . . . 5 ⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1))) |
| 9 | 4, 8 | eqtr4d 2769 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
| 10 | 1, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)) |
| 11 | wlkcl 29592 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 12 | nn0p1nn 12417 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ) | |
| 13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) + 1) ∈ ℕ) |
| 14 | wlklenvp1 29595 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
| 15 | 13, 6, 14 | jca32 515 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)))) |
| 16 | fstwrdne0 14460 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (𝑃‘0) ∈ (Vtx‘𝐺)) | |
| 17 | lswlgt0cl 14473 | . . . . . . 7 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (lastS‘𝑃) ∈ (Vtx‘𝐺)) | |
| 18 | 16, 17 | jca 511 | . . . . . 6 ⊢ ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
| 19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺))) |
| 20 | eqid 2731 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 21 | 20 | wlkf 29591 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 22 | wrdv 14433 | . . . . . 6 ⊢ (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹 ∈ Word V) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word V) |
| 24 | 19, 23, 6 | jca32 515 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
| 25 | 1, 24 | syl 17 | . . 3 ⊢ (𝜑 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺)))) |
| 26 | 5 | iswlkon 29632 | . . 3 ⊢ ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
| 27 | 25, 26 | syl 17 | . 2 ⊢ (𝜑 → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃)))) |
| 28 | 1, 2, 10, 27 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 − cmin 11341 ℕcn 12122 ℕ0cn0 12378 ♯chash 14234 Word cword 14417 lastSclsw 14466 Vtxcvtx 28972 iEdgciedg 28973 Walkscwlks 29573 WalksOncwlkson 29574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-lsw 14467 df-wlks 29576 df-wlkson 29577 |
| This theorem is referenced by: 3wlkond 30146 |
| Copyright terms: Public domain | W3C validator |