MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonwlk1l Structured version   Visualization version   GIF version

Theorem wlkonwlk1l 26960
Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkonwlk1l.w (𝜑𝐹(Walks‘𝐺)𝑃)
Assertion
Ref Expression
wlkonwlk1l (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)

Proof of Theorem wlkonwlk1l
StepHypRef Expression
1 wlkonwlk1l.w . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
2 eqidd 2826 . 2 (𝜑 → (𝑃‘0) = (𝑃‘0))
3 wlklenvm1 26919 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
43fveq2d 6437 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (𝑃‘((♯‘𝑃) − 1)))
5 eqid 2825 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 26915 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 lsw 13624 . . . . 5 (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
86, 7syl 17 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
94, 8eqtr4d 2864 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
101, 9syl 17 . 2 (𝜑 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
11 wlkcl 26913 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
12 nn0p1nn 11659 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ)
1311, 12syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) + 1) ∈ ℕ)
14 wlklenvp1 26916 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1513, 6, 14jca32 513 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))))
16 fstwrdne0 13616 . . . . . . 7 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (𝑃‘0) ∈ (Vtx‘𝐺))
17 lswlgt0cl 13629 . . . . . . 7 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (lastS‘𝑃) ∈ (Vtx‘𝐺))
1816, 17jca 509 . . . . . 6 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)))
1915, 18syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)))
20 eqid 2825 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
2120wlkf 26912 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
22 wrdv 13589 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹 ∈ Word V)
2321, 22syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word V)
2419, 23, 6jca32 513 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))))
251, 24syl 17 . . 3 (𝜑 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))))
265iswlkon 26954 . . 3 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))))
2725, 26syl 17 . 2 (𝜑 → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))))
281, 2, 10, 27mpbir3and 1448 1 (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  Vcvv 3414   class class class wbr 4873  dom cdm 5342  cfv 6123  (class class class)co 6905  0cc0 10252  1c1 10253   + caddc 10255  cmin 10585  cn 11350  0cn0 11618  chash 13410  Word cword 13574  lastSclsw 13622  Vtxcvtx 26294  iEdgciedg 26295  Walkscwlks 26894  WalksOncwlkson 26895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ifp 1092  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-lsw 13623  df-wlks 26897  df-wlkson 26898
This theorem is referenced by:  3wlkond  27547
  Copyright terms: Public domain W3C validator