Step | Hyp | Ref
| Expression |
1 | | wlkonwlk1l.w |
. 2
β’ (π β πΉ(WalksβπΊ)π) |
2 | | eqidd 2732 |
. 2
β’ (π β (πβ0) = (πβ0)) |
3 | | wlklenvm1 29147 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β (β―βπΉ) = ((β―βπ) β 1)) |
4 | 3 | fveq2d 6895 |
. . . 4
β’ (πΉ(WalksβπΊ)π β (πβ(β―βπΉ)) = (πβ((β―βπ) β 1))) |
5 | | eqid 2731 |
. . . . . 6
β’
(VtxβπΊ) =
(VtxβπΊ) |
6 | 5 | wlkpwrd 29142 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β π β Word (VtxβπΊ)) |
7 | | lsw 14519 |
. . . . 5
β’ (π β Word (VtxβπΊ) β (lastSβπ) = (πβ((β―βπ) β 1))) |
8 | 6, 7 | syl 17 |
. . . 4
β’ (πΉ(WalksβπΊ)π β (lastSβπ) = (πβ((β―βπ) β 1))) |
9 | 4, 8 | eqtr4d 2774 |
. . 3
β’ (πΉ(WalksβπΊ)π β (πβ(β―βπΉ)) = (lastSβπ)) |
10 | 1, 9 | syl 17 |
. 2
β’ (π β (πβ(β―βπΉ)) = (lastSβπ)) |
11 | | wlkcl 29140 |
. . . . . . . 8
β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β
β0) |
12 | | nn0p1nn 12516 |
. . . . . . . 8
β’
((β―βπΉ)
β β0 β ((β―βπΉ) + 1) β β) |
13 | 11, 12 | syl 17 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β ((β―βπΉ) + 1) β β) |
14 | | wlklenvp1 29143 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β (β―βπ) = ((β―βπΉ) + 1)) |
15 | 13, 6, 14 | jca32 515 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β (((β―βπΉ) + 1) β β β§ (π β Word (VtxβπΊ) β§ (β―βπ) = ((β―βπΉ) + 1)))) |
16 | | fstwrdne0 14511 |
. . . . . . 7
β’
((((β―βπΉ)
+ 1) β β β§ (π β Word (VtxβπΊ) β§ (β―βπ) = ((β―βπΉ) + 1))) β (πβ0) β (VtxβπΊ)) |
17 | | lswlgt0cl 14524 |
. . . . . . 7
β’
((((β―βπΉ)
+ 1) β β β§ (π β Word (VtxβπΊ) β§ (β―βπ) = ((β―βπΉ) + 1))) β (lastSβπ) β (VtxβπΊ)) |
18 | 16, 17 | jca 511 |
. . . . . 6
β’
((((β―βπΉ)
+ 1) β β β§ (π β Word (VtxβπΊ) β§ (β―βπ) = ((β―βπΉ) + 1))) β ((πβ0) β (VtxβπΊ) β§ (lastSβπ) β (VtxβπΊ))) |
19 | 15, 18 | syl 17 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β ((πβ0) β (VtxβπΊ) β§ (lastSβπ) β (VtxβπΊ))) |
20 | | eqid 2731 |
. . . . . . 7
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
21 | 20 | wlkf 29139 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
22 | | wrdv 14484 |
. . . . . 6
β’ (πΉ β Word dom
(iEdgβπΊ) β πΉ β Word V) |
23 | 21, 22 | syl 17 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β πΉ β Word V) |
24 | 19, 23, 6 | jca32 515 |
. . . 4
β’ (πΉ(WalksβπΊ)π β (((πβ0) β (VtxβπΊ) β§ (lastSβπ) β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word (VtxβπΊ)))) |
25 | 1, 24 | syl 17 |
. . 3
β’ (π β (((πβ0) β (VtxβπΊ) β§ (lastSβπ) β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word (VtxβπΊ)))) |
26 | 5 | iswlkon 29182 |
. . 3
β’ ((((πβ0) β
(VtxβπΊ) β§
(lastSβπ) β
(VtxβπΊ)) β§ (πΉ β Word V β§ π β Word (VtxβπΊ))) β (πΉ((πβ0)(WalksOnβπΊ)(lastSβπ))π β (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ0) β§ (πβ(β―βπΉ)) = (lastSβπ)))) |
27 | 25, 26 | syl 17 |
. 2
β’ (π β (πΉ((πβ0)(WalksOnβπΊ)(lastSβπ))π β (πΉ(WalksβπΊ)π β§ (πβ0) = (πβ0) β§ (πβ(β―βπΉ)) = (lastSβπ)))) |
28 | 1, 2, 10, 27 | mpbir3and 1341 |
1
β’ (π β πΉ((πβ0)(WalksOnβπΊ)(lastSβπ))π) |