Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonwlk1l Structured version   Visualization version   GIF version

Theorem wlkonwlk1l 27456
 Description: A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.)
Hypothesis
Ref Expression
wlkonwlk1l.w (𝜑𝐹(Walks‘𝐺)𝑃)
Assertion
Ref Expression
wlkonwlk1l (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)

Proof of Theorem wlkonwlk1l
StepHypRef Expression
1 wlkonwlk1l.w . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
2 eqidd 2825 . 2 (𝜑 → (𝑃‘0) = (𝑃‘0))
3 wlklenvm1 27414 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1))
43fveq2d 6665 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (𝑃‘((♯‘𝑃) − 1)))
5 eqid 2824 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
65wlkpwrd 27410 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word (Vtx‘𝐺))
7 lsw 13916 . . . . 5 (𝑃 ∈ Word (Vtx‘𝐺) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
86, 7syl 17 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
94, 8eqtr4d 2862 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
101, 9syl 17 . 2 (𝜑 → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
11 wlkcl 27408 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
12 nn0p1nn 11933 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) + 1) ∈ ℕ)
1311, 12syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) + 1) ∈ ℕ)
14 wlklenvp1 27411 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
1513, 6, 14jca32 519 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))))
16 fstwrdne0 13908 . . . . . . 7 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (𝑃‘0) ∈ (Vtx‘𝐺))
17 lswlgt0cl 13921 . . . . . . 7 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → (lastS‘𝑃) ∈ (Vtx‘𝐺))
1816, 17jca 515 . . . . . 6 ((((♯‘𝐹) + 1) ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1))) → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)))
1915, 18syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)))
20 eqid 2824 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
2120wlkf 27407 . . . . . 6 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom (iEdg‘𝐺))
22 wrdv 13881 . . . . . 6 (𝐹 ∈ Word dom (iEdg‘𝐺) → 𝐹 ∈ Word V)
2321, 22syl 17 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word V)
2419, 23, 6jca32 519 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))))
251, 24syl 17 . . 3 (𝜑 → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))))
265iswlkon 27450 . . 3 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (lastS‘𝑃) ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word (Vtx‘𝐺))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))))
2725, 26syl 17 . 2 (𝜑 → (𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘0) ∧ (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))))
281, 2, 10, 27mpbir3and 1339 1 (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)(lastS‘𝑃))𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  Vcvv 3480   class class class wbr 5052  dom cdm 5542  ‘cfv 6343  (class class class)co 7149  0cc0 10535  1c1 10536   + caddc 10538   − cmin 10868  ℕcn 11634  ℕ0cn0 11894  ♯chash 13695  Word cword 13866  lastSclsw 13914  Vtxcvtx 26792  iEdgciedg 26793  Walkscwlks 27389  WalksOncwlkson 27390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-lsw 13915  df-wlks 27392  df-wlkson 27393 This theorem is referenced by:  3wlkond  27959
 Copyright terms: Public domain W3C validator