| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundomg | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| iundomg.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) |
| iundomg.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
| iundomg.4 | ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| iundomg | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfo.1 | . . . . 5 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | iundomg.2 | . . . . 5 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) | |
| 3 | iundomg.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) | |
| 4 | 1, 2, 3 | iundom2g 10442 | . . . 4 ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |
| 5 | iundomg.4 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 6 | acndom2 9956 | . . . 4 ⊢ (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 7 | 4, 5, 6 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| 8 | 1 | iunfo 10441 | . . 3 ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 |
| 9 | fodomacn 9958 | . . 3 ⊢ (𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ((2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇)) | |
| 10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇) |
| 11 | domtr 8940 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ (𝐴 × 𝐶)) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | |
| 12 | 10, 4, 11 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {csn 4577 ∪ ciun 4943 class class class wbr 5095 × cxp 5619 ↾ cres 5623 –onto→wfo 6487 (class class class)co 7355 2nd c2nd 7929 ↑m cmap 8759 ≼ cdom 8877 AC wacn 9842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-dom 8881 df-acn 9846 |
| This theorem is referenced by: iundom 10444 iunctb 10476 |
| Copyright terms: Public domain | W3C validator |