MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundomg Structured version   Visualization version   GIF version

Theorem iundomg 10155
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
iundomg.2 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
iundomg.3 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
iundomg.4 (𝜑 → (𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵)
Assertion
Ref Expression
iundomg (𝜑 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iundomg
StepHypRef Expression
1 iunfo.1 . . . . 5 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
2 iundomg.2 . . . . 5 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
3 iundomg.3 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
41, 2, 3iundom2g 10154 . . . 4 (𝜑𝑇 ≼ (𝐴 × 𝐶))
5 iundomg.4 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵)
6 acndom2 9668 . . . 4 (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵𝑇AC 𝑥𝐴 𝐵))
74, 5, 6sylc 65 . . 3 (𝜑𝑇AC 𝑥𝐴 𝐵)
81iunfo 10153 . . 3 (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
9 fodomacn 9670 . . 3 (𝑇AC 𝑥𝐴 𝐵 → ((2nd𝑇):𝑇onto 𝑥𝐴 𝐵 𝑥𝐴 𝐵𝑇))
107, 8, 9mpisyl 21 . 2 (𝜑 𝑥𝐴 𝐵𝑇)
11 domtr 8681 . 2 (( 𝑥𝐴 𝐵𝑇𝑇 ≼ (𝐴 × 𝐶)) → 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
1210, 4, 11syl2anc 587 1 (𝜑 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wral 3061  {csn 4541   ciun 4904   class class class wbr 5053   × cxp 5549  cres 5553  ontowfo 6378  (class class class)co 7213  2nd c2nd 7760  m cmap 8508  cdom 8624  AC wacn 9554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-dom 8628  df-acn 9558
This theorem is referenced by:  iundom  10156  iunctb  10188
  Copyright terms: Public domain W3C validator