Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iundomg | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
iundomg.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) |
iundomg.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
iundomg.4 | ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
iundomg | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunfo.1 | . . . . 5 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | iundomg.2 | . . . . 5 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) | |
3 | iundomg.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) | |
4 | 1, 2, 3 | iundom2g 10227 | . . . 4 ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |
5 | iundomg.4 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) | |
6 | acndom2 9741 | . . . 4 ⊢ (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 4, 5, 6 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
8 | 1 | iunfo 10226 | . . 3 ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 |
9 | fodomacn 9743 | . . 3 ⊢ (𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ((2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇)) | |
10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇) |
11 | domtr 8748 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ (𝐴 × 𝐶)) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | |
12 | 10, 4, 11 | syl2anc 583 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {csn 4558 ∪ ciun 4921 class class class wbr 5070 × cxp 5578 ↾ cres 5582 –onto→wfo 6416 (class class class)co 7255 2nd c2nd 7803 ↑m cmap 8573 ≼ cdom 8689 AC wacn 9627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-dom 8693 df-acn 9631 |
This theorem is referenced by: iundom 10229 iunctb 10261 |
Copyright terms: Public domain | W3C validator |