MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundomg Structured version   Visualization version   GIF version

Theorem iundomg 10427
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
iundomg.2 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
iundomg.3 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
iundomg.4 (𝜑 → (𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵)
Assertion
Ref Expression
iundomg (𝜑 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iundomg
StepHypRef Expression
1 iunfo.1 . . . . 5 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
2 iundomg.2 . . . . 5 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
3 iundomg.3 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
41, 2, 3iundom2g 10426 . . . 4 (𝜑𝑇 ≼ (𝐴 × 𝐶))
5 iundomg.4 . . . 4 (𝜑 → (𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵)
6 acndom2 9940 . . . 4 (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC 𝑥𝐴 𝐵𝑇AC 𝑥𝐴 𝐵))
74, 5, 6sylc 65 . . 3 (𝜑𝑇AC 𝑥𝐴 𝐵)
81iunfo 10425 . . 3 (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
9 fodomacn 9942 . . 3 (𝑇AC 𝑥𝐴 𝐵 → ((2nd𝑇):𝑇onto 𝑥𝐴 𝐵 𝑥𝐴 𝐵𝑇))
107, 8, 9mpisyl 21 . 2 (𝜑 𝑥𝐴 𝐵𝑇)
11 domtr 8924 . 2 (( 𝑥𝐴 𝐵𝑇𝑇 ≼ (𝐴 × 𝐶)) → 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
1210, 4, 11syl2anc 584 1 (𝜑 𝑥𝐴 𝐵 ≼ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {csn 4571   ciun 4936   class class class wbr 5086   × cxp 5609  cres 5613  ontowfo 6474  (class class class)co 7341  2nd c2nd 7915  m cmap 8745  cdom 8862  AC wacn 9826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-dom 8866  df-acn 9830
This theorem is referenced by:  iundom  10428  iunctb  10460
  Copyright terms: Public domain W3C validator