![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iundomg | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
iundomg.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑𝑚 𝐵) ∈ AC 𝐴) |
iundomg.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
iundomg.4 | ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
iundomg | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunfo.1 | . . . . 5 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | iundomg.2 | . . . . 5 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑𝑚 𝐵) ∈ AC 𝐴) | |
3 | iundomg.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) | |
4 | 1, 2, 3 | iundom2g 9697 | . . . 4 ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |
5 | iundomg.4 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) | |
6 | acndom2 9210 | . . . 4 ⊢ (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 4, 5, 6 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
8 | 1 | iunfo 9696 | . . 3 ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 |
9 | fodomacn 9212 | . . 3 ⊢ (𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ((2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇)) | |
10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇) |
11 | domtr 8294 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ (𝐴 × 𝐶)) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | |
12 | 10, 4, 11 | syl2anc 579 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {csn 4398 ∪ ciun 4753 class class class wbr 4886 × cxp 5353 ↾ cres 5357 –onto→wfo 6133 (class class class)co 6922 2nd c2nd 7444 ↑𝑚 cmap 8140 ≼ cdom 8239 AC wacn 9097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-map 8142 df-dom 8243 df-acn 9101 |
This theorem is referenced by: iundom 9699 iunctb 9731 |
Copyright terms: Public domain | W3C validator |