| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundomg | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| iunfo.1 | ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| iundomg.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) |
| iundomg.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
| iundomg.4 | ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| iundomg | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunfo.1 | . . . . 5 ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | iundomg.2 | . . . . 5 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) | |
| 3 | iundomg.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) | |
| 4 | 1, 2, 3 | iundom2g 10426 | . . . 4 ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |
| 5 | iundomg.4 | . . . 4 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 6 | acndom2 9940 | . . . 4 ⊢ (𝑇 ≼ (𝐴 × 𝐶) → ((𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 7 | 4, 5, 6 | sylc 65 | . . 3 ⊢ (𝜑 → 𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) |
| 8 | 1 | iunfo 10425 | . . 3 ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 |
| 9 | fodomacn 9942 | . . 3 ⊢ (𝑇 ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵 → ((2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇)) | |
| 10 | 7, 8, 9 | mpisyl 21 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇) |
| 11 | domtr 8924 | . 2 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ≼ 𝑇 ∧ 𝑇 ≼ (𝐴 × 𝐶)) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | |
| 12 | 10, 4, 11 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {csn 4571 ∪ ciun 4936 class class class wbr 5086 × cxp 5609 ↾ cres 5613 –onto→wfo 6474 (class class class)co 7341 2nd c2nd 7915 ↑m cmap 8745 ≼ cdom 8862 AC wacn 9826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-dom 8866 df-acn 9830 |
| This theorem is referenced by: iundom 10428 iunctb 10460 |
| Copyright terms: Public domain | W3C validator |