| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundom | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| iundom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → 𝐴 ∈ 𝑉) | |
| 3 | ovex 7464 | . . . . . 6 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
| 4 | 3 | rgenw 3065 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V |
| 5 | iunexg 7988 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) | |
| 6 | 2, 4, 5 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) |
| 7 | numth3 10510 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) |
| 9 | numacn 10089 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴)) | |
| 10 | 2, 8, 9 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴) |
| 11 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) | |
| 12 | reldom 8991 | . . . . . 6 ⊢ Rel ≼ | |
| 13 | 12 | brrelex1i 5741 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → 𝐶 ∈ V) |
| 14 | 13 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 15 | iunexg 7988 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) | |
| 16 | 14, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 17 | 1, 10, 11 | iundom2g 10580 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵)) |
| 18 | 12 | brrelex2i 5742 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V) |
| 19 | numth3 10510 | . . . 4 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
| 21 | numacn 10089 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 22 | 16, 20, 21 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶) |
| 23 | 1, 10, 11, 22 | iundomg 10581 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 {csn 4626 ∪ ciun 4991 class class class wbr 5143 × cxp 5683 dom cdm 5685 (class class class)co 7431 ↑m cmap 8866 ≼ cdom 8983 cardccrd 9975 AC wacn 9978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-ac2 10503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-card 9979 df-acn 9982 df-ac 10156 |
| This theorem is referenced by: unidom 10583 alephreg 10622 inar1 10815 |
| Copyright terms: Public domain | W3C validator |