| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundom | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| iundom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → 𝐴 ∈ 𝑉) | |
| 3 | ovex 7402 | . . . . . 6 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
| 4 | 3 | rgenw 3048 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V |
| 5 | iunexg 7921 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) | |
| 6 | 2, 4, 5 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) |
| 7 | numth3 10399 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) |
| 9 | numacn 9978 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴)) | |
| 10 | 2, 8, 9 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴) |
| 11 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) | |
| 12 | reldom 8901 | . . . . . 6 ⊢ Rel ≼ | |
| 13 | 12 | brrelex1i 5687 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → 𝐶 ∈ V) |
| 14 | 13 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 15 | iunexg 7921 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) | |
| 16 | 14, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 17 | 1, 10, 11 | iundom2g 10469 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵)) |
| 18 | 12 | brrelex2i 5688 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V) |
| 19 | numth3 10399 | . . . 4 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
| 21 | numacn 9978 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 22 | 16, 20, 21 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶) |
| 23 | 1, 10, 11, 22 | iundomg 10470 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 {csn 4585 ∪ ciun 4951 class class class wbr 5102 × cxp 5629 dom cdm 5631 (class class class)co 7369 ↑m cmap 8776 ≼ cdom 8893 cardccrd 9864 AC wacn 9867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-card 9868 df-acn 9871 df-ac 10045 |
| This theorem is referenced by: unidom 10472 alephreg 10511 inar1 10704 |
| Copyright terms: Public domain | W3C validator |