MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   GIF version

Theorem iundom 9699
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2777 . 2 𝑥𝐴 ({𝑥} × 𝐶) = 𝑥𝐴 ({𝑥} × 𝐶)
2 simpl 476 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝐴𝑉)
3 ovex 6954 . . . . . 6 (𝐵𝑚 𝐶) ∈ V
43rgenw 3105 . . . . 5 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V
5 iunexg 7421 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 (𝐵𝑚 𝐶) ∈ V) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
62, 4, 5sylancl 580 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V)
7 numth3 9627 . . . 4 ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ V → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card)
9 numacn 9205 . . 3 (𝐴𝑉 → ( 𝑥𝐴 (𝐵𝑚 𝐶) ∈ dom card → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴))
102, 8, 9sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵𝑚 𝐶) ∈ AC 𝐴)
11 simpr 479 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑥𝐴 𝐶𝐵)
12 reldom 8247 . . . . . 6 Rel ≼
1312brrelex1i 5406 . . . . 5 (𝐶𝐵𝐶 ∈ V)
1413ralimi 3133 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑥𝐴 𝐶 ∈ V)
15 iunexg 7421 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶 ∈ V) → 𝑥𝐴 𝐶 ∈ V)
1614, 15sylan2 586 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ V)
171, 10, 11iundom2g 9697 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵))
1812brrelex2i 5407 . . . 4 ( 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V)
19 numth3 9627 . . . 4 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card)
2017, 18, 193syl 18 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ dom card)
21 numacn 9205 . . 3 ( 𝑥𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶))
2216, 20, 21sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶)
231, 10, 11, 22iundomg 9698 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2106  wral 3089  Vcvv 3397  {csn 4397   ciun 4753   class class class wbr 4886   × cxp 5353  dom cdm 5355  (class class class)co 6922  𝑚 cmap 8140  cdom 8239  cardccrd 9094  AC wacn 9097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-ac2 9620
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-card 9098  df-acn 9101  df-ac 9272
This theorem is referenced by:  unidom  9700  alephreg  9739  inar1  9932
  Copyright terms: Public domain W3C validator