MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   GIF version

Theorem iundom 10539
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2732 . 2 𝑥𝐴 ({𝑥} × 𝐶) = 𝑥𝐴 ({𝑥} × 𝐶)
2 simpl 483 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝐴𝑉)
3 ovex 7444 . . . . . 6 (𝐵m 𝐶) ∈ V
43rgenw 3065 . . . . 5 𝑥𝐴 (𝐵m 𝐶) ∈ V
5 iunexg 7952 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 (𝐵m 𝐶) ∈ V) → 𝑥𝐴 (𝐵m 𝐶) ∈ V)
62, 4, 5sylancl 586 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ V)
7 numth3 10467 . . . 4 ( 𝑥𝐴 (𝐵m 𝐶) ∈ V → 𝑥𝐴 (𝐵m 𝐶) ∈ dom card)
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ dom card)
9 numacn 10046 . . 3 (𝐴𝑉 → ( 𝑥𝐴 (𝐵m 𝐶) ∈ dom card → 𝑥𝐴 (𝐵m 𝐶) ∈ AC 𝐴))
102, 8, 9sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ AC 𝐴)
11 simpr 485 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑥𝐴 𝐶𝐵)
12 reldom 8947 . . . . . 6 Rel ≼
1312brrelex1i 5732 . . . . 5 (𝐶𝐵𝐶 ∈ V)
1413ralimi 3083 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑥𝐴 𝐶 ∈ V)
15 iunexg 7952 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶 ∈ V) → 𝑥𝐴 𝐶 ∈ V)
1614, 15sylan2 593 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ V)
171, 10, 11iundom2g 10537 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵))
1812brrelex2i 5733 . . . 4 ( 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V)
19 numth3 10467 . . . 4 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card)
2017, 18, 193syl 18 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ dom card)
21 numacn 10046 . . 3 ( 𝑥𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶))
2216, 20, 21sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶)
231, 10, 11, 22iundomg 10538 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3061  Vcvv 3474  {csn 4628   ciun 4997   class class class wbr 5148   × cxp 5674  dom cdm 5676  (class class class)co 7411  m cmap 8822  cdom 8939  cardccrd 9932  AC wacn 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-card 9936  df-acn 9939  df-ac 10113
This theorem is referenced by:  unidom  10540  alephreg  10579  inar1  10772
  Copyright terms: Public domain W3C validator