| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundom | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| iundom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → 𝐴 ∈ 𝑉) | |
| 3 | ovex 7379 | . . . . . 6 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
| 4 | 3 | rgenw 3051 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V |
| 5 | iunexg 7895 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) | |
| 6 | 2, 4, 5 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) |
| 7 | numth3 10361 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) |
| 9 | numacn 9940 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴)) | |
| 10 | 2, 8, 9 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴) |
| 11 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) | |
| 12 | reldom 8875 | . . . . . 6 ⊢ Rel ≼ | |
| 13 | 12 | brrelex1i 5670 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → 𝐶 ∈ V) |
| 14 | 13 | ralimi 3069 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 15 | iunexg 7895 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) | |
| 16 | 14, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 17 | 1, 10, 11 | iundom2g 10431 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵)) |
| 18 | 12 | brrelex2i 5671 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V) |
| 19 | numth3 10361 | . . . 4 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
| 21 | numacn 9940 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 22 | 16, 20, 21 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶) |
| 23 | 1, 10, 11, 22 | iundomg 10432 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4573 ∪ ciun 4939 class class class wbr 5089 × cxp 5612 dom cdm 5614 (class class class)co 7346 ↑m cmap 8750 ≼ cdom 8867 cardccrd 9828 AC wacn 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-card 9832 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: unidom 10434 alephreg 10473 inar1 10666 |
| Copyright terms: Public domain | W3C validator |