MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom Structured version   Visualization version   GIF version

Theorem iundom 10554
Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
iundom ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem iundom
StepHypRef Expression
1 eqid 2735 . 2 𝑥𝐴 ({𝑥} × 𝐶) = 𝑥𝐴 ({𝑥} × 𝐶)
2 simpl 482 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝐴𝑉)
3 ovex 7436 . . . . . 6 (𝐵m 𝐶) ∈ V
43rgenw 3055 . . . . 5 𝑥𝐴 (𝐵m 𝐶) ∈ V
5 iunexg 7960 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 (𝐵m 𝐶) ∈ V) → 𝑥𝐴 (𝐵m 𝐶) ∈ V)
62, 4, 5sylancl 586 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ V)
7 numth3 10482 . . . 4 ( 𝑥𝐴 (𝐵m 𝐶) ∈ V → 𝑥𝐴 (𝐵m 𝐶) ∈ dom card)
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ dom card)
9 numacn 10061 . . 3 (𝐴𝑉 → ( 𝑥𝐴 (𝐵m 𝐶) ∈ dom card → 𝑥𝐴 (𝐵m 𝐶) ∈ AC 𝐴))
102, 8, 9sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 (𝐵m 𝐶) ∈ AC 𝐴)
11 simpr 484 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑥𝐴 𝐶𝐵)
12 reldom 8963 . . . . . 6 Rel ≼
1312brrelex1i 5710 . . . . 5 (𝐶𝐵𝐶 ∈ V)
1413ralimi 3073 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑥𝐴 𝐶 ∈ V)
15 iunexg 7960 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶 ∈ V) → 𝑥𝐴 𝐶 ∈ V)
1614, 15sylan2 593 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ∈ V)
171, 10, 11iundom2g 10552 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵))
1812brrelex2i 5711 . . . 4 ( 𝑥𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V)
19 numth3 10482 . . . 4 ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card)
2017, 18, 193syl 18 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ dom card)
21 numacn 10061 . . 3 ( 𝑥𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶))
2216, 20, 21sylc 65 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → (𝐴 × 𝐵) ∈ AC 𝑥𝐴 𝐶)
231, 10, 11, 22iundomg 10553 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐶𝐵) → 𝑥𝐴 𝐶 ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  Vcvv 3459  {csn 4601   ciun 4967   class class class wbr 5119   × cxp 5652  dom cdm 5654  (class class class)co 7403  m cmap 8838  cdom 8955  cardccrd 9947  AC wacn 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-ac2 10475
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-card 9951  df-acn 9954  df-ac 10128
This theorem is referenced by:  unidom  10555  alephreg  10594  inar1  10787
  Copyright terms: Public domain W3C validator