| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iundom | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| iundom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → 𝐴 ∈ 𝑉) | |
| 3 | ovex 7423 | . . . . . 6 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
| 4 | 3 | rgenw 3049 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V |
| 5 | iunexg 7945 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) | |
| 6 | 2, 4, 5 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V) |
| 7 | numth3 10430 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ V → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card) |
| 9 | numacn 10009 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ dom card → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴)) | |
| 10 | 2, 8, 9 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ∈ AC 𝐴) |
| 11 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) | |
| 12 | reldom 8927 | . . . . . 6 ⊢ Rel ≼ | |
| 13 | 12 | brrelex1i 5697 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → 𝐶 ∈ V) |
| 14 | 13 | ralimi 3067 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 15 | iunexg 7945 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) | |
| 16 | 14, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V) |
| 17 | 1, 10, 11 | iundom2g 10500 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵)) |
| 18 | 12 | brrelex2i 5698 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐶) ≼ (𝐴 × 𝐵) → (𝐴 × 𝐵) ∈ V) |
| 19 | numth3 10430 | . . . 4 ⊢ ((𝐴 × 𝐵) ∈ V → (𝐴 × 𝐵) ∈ dom card) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ dom card) |
| 21 | numacn 10009 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ((𝐴 × 𝐵) ∈ dom card → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 22 | 16, 20, 21 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → (𝐴 × 𝐵) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶) |
| 23 | 1, 10, 11, 22 | iundomg 10501 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {csn 4592 ∪ ciun 4958 class class class wbr 5110 × cxp 5639 dom cdm 5641 (class class class)co 7390 ↑m cmap 8802 ≼ cdom 8919 cardccrd 9895 AC wacn 9898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-card 9899 df-acn 9902 df-ac 10076 |
| This theorem is referenced by: unidom 10503 alephreg 10542 inar1 10735 |
| Copyright terms: Public domain | W3C validator |