Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmlej22 | Structured version Visualization version GIF version |
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
Ref | Expression |
---|---|
latledi.b | ⊢ 𝐵 = (Base‘𝐾) |
latledi.l | ⊢ ≤ = (le‘𝐾) |
latledi.j | ⊢ ∨ = (join‘𝐾) |
latledi.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlej22 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latledi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latledi.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | 1, 2 | latmcom 18209 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
4 | 3 | 3adant3r3 1182 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
5 | latledi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | latledi.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 1, 5, 6, 2 | latmlej12 18225 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑍 ∨ 𝑋)) |
8 | 4, 7 | eqbrtrrd 5101 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 lecple 16997 joincjn 18057 meetcmee 18058 Latclat 18177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-poset 18059 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-lat 18178 |
This theorem is referenced by: dalawlem2 37912 dalawlem3 37913 dalawlem6 37916 |
Copyright terms: Public domain | W3C validator |