Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmlej22 | Structured version Visualization version GIF version |
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
Ref | Expression |
---|---|
latledi.b | ⊢ 𝐵 = (Base‘𝐾) |
latledi.l | ⊢ ≤ = (le‘𝐾) |
latledi.j | ⊢ ∨ = (join‘𝐾) |
latledi.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlej22 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latledi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latledi.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | 1, 2 | latmcom 18192 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
4 | 3 | 3adant3r3 1183 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
5 | latledi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | latledi.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | 1, 5, 6, 2 | latmlej12 18208 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑍 ∨ 𝑋)) |
8 | 4, 7 | eqbrtrrd 5103 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 lecple 16980 joincjn 18040 meetcmee 18041 Latclat 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-poset 18042 df-lub 18075 df-glb 18076 df-join 18077 df-meet 18078 df-lat 18161 |
This theorem is referenced by: dalawlem2 37895 dalawlem3 37896 dalawlem6 37899 |
Copyright terms: Public domain | W3C validator |