Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem2 Structured version   Visualization version   GIF version

Theorem dalawlem2 38335
Description: Lemma for dalaw 38349. Utility lemma that breaks ((𝑃 𝑄) (𝑆 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)))

Proof of Theorem dalawlem2
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ HL)
21hllatd 37826 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ Lat)
3 simp2l 1199 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑃𝐴)
4 simp2r 1200 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑄𝐴)
5 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 dalawlem.j . . . . . . 7 = (join‘𝐾)
7 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 37829 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
91, 3, 4, 8syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp3r 1202 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇𝐴)
115, 7atbase 37751 . . . . . 6 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑇 ∈ (Base‘𝐾))
13 dalawlem.l . . . . . 6 = (le‘𝐾)
145, 13, 6latlej1 18337 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
152, 9, 12, 14syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
16 simp3l 1201 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆𝐴)
175, 7atbase 37751 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ∈ (Base‘𝐾))
195, 13, 6latlej1 18337 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
202, 9, 18, 19syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑆))
215, 6latjcl 18328 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
222, 9, 12, 21syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
235, 6latjcl 18328 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
242, 9, 18, 23syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
25 dalawlem.m . . . . . 6 = (meet‘𝐾)
265, 13, 25latlem12 18355 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑃 𝑄) 𝑇) ∧ (𝑃 𝑄) ((𝑃 𝑄) 𝑆)) ↔ (𝑃 𝑄) (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆))))
272, 9, 22, 24, 26syl13anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑄) ((𝑃 𝑄) 𝑇) ∧ (𝑃 𝑄) ((𝑃 𝑄) 𝑆)) ↔ (𝑃 𝑄) (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆))))
2815, 20, 27mpbi2and 710 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑃 𝑄) (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)))
295, 25latmcl 18329 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) ∈ (Base‘𝐾))
302, 22, 24, 29syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) ∈ (Base‘𝐾))
315, 6, 7hlatjcl 37829 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
321, 16, 10, 31syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
335, 13, 25latmlem1 18358 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((𝑃 𝑄) (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇))))
342, 9, 30, 32, 33syl13anc 1372 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇))))
3528, 34mpd 15 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇)))
365, 13, 6latlej2 18338 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ((𝑃 𝑄) 𝑆))
372, 9, 18, 36syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝑆 ((𝑃 𝑄) 𝑆))
385, 13, 6, 25, 7atmod3i1 38327 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ 𝑆 ((𝑃 𝑄) 𝑆)) → (𝑆 (((𝑃 𝑄) 𝑆) 𝑇)) = (((𝑃 𝑄) 𝑆) (𝑆 𝑇)))
391, 16, 24, 12, 37, 38syl131anc 1383 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (𝑆 (((𝑃 𝑄) 𝑆) 𝑇)) = (((𝑃 𝑄) 𝑆) (𝑆 𝑇)))
4039oveq2d 7373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑄) 𝑇) (𝑆 (((𝑃 𝑄) 𝑆) 𝑇))) = (((𝑃 𝑄) 𝑇) (((𝑃 𝑄) 𝑆) (𝑆 𝑇))))
415, 25latmcl 18329 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
422, 24, 12, 41syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
435, 13, 6, 25latmlej22 18370 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑃 𝑄) 𝑇))
442, 12, 24, 9, 43syl13anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑃 𝑄) 𝑇))
455, 13, 6, 25, 7atmod2i2 38325 . . . 4 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾)) ∧ (((𝑃 𝑄) 𝑆) 𝑇) ((𝑃 𝑄) 𝑇)) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)) = (((𝑃 𝑄) 𝑇) (𝑆 (((𝑃 𝑄) 𝑆) 𝑇))))
461, 16, 22, 42, 44, 45syl131anc 1383 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)) = (((𝑃 𝑄) 𝑇) (𝑆 (((𝑃 𝑄) 𝑆) 𝑇))))
47 hlol 37823 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
481, 47syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → 𝐾 ∈ OL)
495, 25latmassOLD 37691 . . . 4 ((𝐾 ∈ OL ∧ (((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇)) = (((𝑃 𝑄) 𝑇) (((𝑃 𝑄) 𝑆) (𝑆 𝑇))))
5048, 22, 24, 32, 49syl13anc 1372 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇)) = (((𝑃 𝑄) 𝑇) (((𝑃 𝑄) 𝑆) (𝑆 𝑇))))
5140, 46, 503eqtr4rd 2787 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((((𝑃 𝑄) 𝑇) ((𝑃 𝑄) 𝑆)) (𝑆 𝑇)) = ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)))
5235, 51breqtrd 5131 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  Latclat 18320  OLcol 37636  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-psubsp 37966  df-pmap 37967  df-padd 38259
This theorem is referenced by:  dalawlem5  38338  dalawlem8  38341
  Copyright terms: Public domain W3C validator