Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem2 Structured version   Visualization version   GIF version

Theorem dalawlem2 39256
Description: Lemma for dalaw 39270. Utility lemma that breaks ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l ≀ = (leβ€˜πΎ)
dalawlem.j ∨ = (joinβ€˜πΎ)
dalawlem.m ∧ = (meetβ€˜πΎ)
dalawlem.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
dalawlem2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))

Proof of Theorem dalawlem2
StepHypRef Expression
1 simp1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
21hllatd 38747 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
3 simp2l 1196 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
4 simp2r 1197 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
5 eqid 2726 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
6 dalawlem.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
7 dalawlem.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7hlatjcl 38750 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
91, 3, 4, 8syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
10 simp3r 1199 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑇 ∈ 𝐴)
115, 7atbase 38672 . . . . . 6 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
1210, 11syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
13 dalawlem.l . . . . . 6 ≀ = (leβ€˜πΎ)
145, 13, 6latlej1 18413 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇))
152, 9, 12, 14syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇))
16 simp3l 1198 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
175, 7atbase 38672 . . . . . 6 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1816, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
195, 13, 6latlej1 18413 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
202, 9, 18, 19syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
215, 6latjcl 18404 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
222, 9, 12, 21syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ))
235, 6latjcl 18404 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
242, 9, 18, 23syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
25 dalawlem.m . . . . . 6 ∧ = (meetβ€˜πΎ)
265, 13, 25latlem12 18431 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆))))
272, 9, 22, 24, 26syl13anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆))))
2815, 20, 27mpbi2and 709 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)))
295, 25latmcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
302, 22, 24, 29syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
315, 6, 7hlatjcl 38750 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
321, 16, 10, 31syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
335, 13, 25latmlem1 18434 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ 𝑄) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇))))
342, 9, 30, 32, 33syl13anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ≀ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇))))
3528, 34mpd 15 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)))
365, 13, 6latlej2 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
372, 9, 18, 36syl3anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
385, 13, 6, 25, 7atmod3i1 39248 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) ∧ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)) β†’ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))
391, 16, 24, 12, 37, 38syl131anc 1380 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))
4039oveq2d 7421 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))))
415, 25latmcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
422, 24, 12, 41syl3anc 1368 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
435, 13, 6, 25latmlej22 18446 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇))
442, 12, 24, 9, 43syl13anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇))
455, 13, 6, 25, 7atmod2i2 39246 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑃 ∨ 𝑄) ∨ 𝑇)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))))
461, 16, 22, 42, 44, 45syl131anc 1380 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))))
47 hlol 38744 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
481, 47syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ 𝐾 ∈ OL)
495, 25latmassOLD 38612 . . . 4 ((𝐾 ∈ OL ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))))
5048, 22, 24, 32, 49syl13anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))))
5140, 46, 503eqtr4rd 2777 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))
5235, 51breqtrd 5167 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≀ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Latclat 18396  OLcol 38557  Atomscatm 38646  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-psubsp 38887  df-pmap 38888  df-padd 39180
This theorem is referenced by:  dalawlem5  39259  dalawlem8  39262
  Copyright terms: Public domain W3C validator