Proof of Theorem dalawlem2
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 2 | 1 | hllatd 39387 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 3 | | simp2l 1200 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 4 | | simp2r 1201 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 6 | | dalawlem.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 7 | | dalawlem.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | 5, 6, 7 | hlatjcl 39390 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 9 | 1, 3, 4, 8 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 10 | | simp3r 1203 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
| 11 | 5, 7 | atbase 39312 |
. . . . . 6
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑇 ∈ (Base‘𝐾)) |
| 13 | | dalawlem.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
| 14 | 5, 13, 6 | latlej1 18463 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
| 15 | 2, 9, 12, 14 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
| 16 | | simp3l 1202 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
| 17 | 5, 7 | atbase 39312 |
. . . . . 6
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
| 19 | 5, 13, 6 | latlej1 18463 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 20 | 2, 9, 18, 19 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 21 | 5, 6 | latjcl 18454 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
| 22 | 2, 9, 12, 21 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
| 23 | 5, 6 | latjcl 18454 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 24 | 2, 9, 18, 23 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
| 25 | | dalawlem.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 26 | 5, 13, 25 | latlem12 18481 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)))) |
| 27 | 2, 9, 22, 24, 26 | syl13anc 1374 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)))) |
| 28 | 15, 20, 27 | mpbi2and 712 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆))) |
| 29 | 5, 25 | latmcl 18455 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 30 | 2, 22, 24, 29 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾)) |
| 31 | 5, 6, 7 | hlatjcl 39390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 32 | 1, 16, 10, 31 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 33 | 5, 13, 25 | latmlem1 18484 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)))) |
| 34 | 2, 9, 30, 32, 33 | syl13anc 1374 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)))) |
| 35 | 28, 34 | mpd 15 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇))) |
| 36 | 5, 13, 6 | latlej2 18464 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 37 | 2, 9, 18, 36 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
| 38 | 5, 13, 6, 25, 7 | atmod3i1 39888 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))) |
| 39 | 1, 16, 24, 12, 37, 38 | syl131anc 1385 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))) |
| 40 | 39 | oveq2d 7426 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
| 41 | 5, 25 | latmcl 18455 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
| 42 | 2, 24, 12, 41 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
| 43 | 5, 13, 6, 25 | latmlej22 18496 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
| 44 | 2, 12, 24, 9, 43 | syl13anc 1374 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
| 45 | 5, 13, 6, 25, 7 | atmod2i2 39886 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))) |
| 46 | 1, 16, 22, 42, 44, 45 | syl131anc 1385 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))) |
| 47 | | hlol 39384 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 48 | 1, 47 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ OL) |
| 49 | 5, 25 | latmassOLD 39252 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾))) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
| 50 | 48, 22, 24, 32, 49 | syl13anc 1374 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
| 51 | 40, 46, 50 | 3eqtr4rd 2782 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) |
| 52 | 35, 51 | breqtrd 5150 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) |