Proof of Theorem dalawlem2
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37378 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | | simp2l 1198 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
4 | | simp2r 1199 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | dalawlem.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
7 | | dalawlem.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 5, 6, 7 | hlatjcl 37381 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
9 | 1, 3, 4, 8 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
10 | | simp3r 1201 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
11 | 5, 7 | atbase 37303 |
. . . . . 6
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑇 ∈ (Base‘𝐾)) |
13 | | dalawlem.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
14 | 5, 13, 6 | latlej1 18166 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
15 | 2, 9, 12, 14 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
16 | | simp3l 1200 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
17 | 5, 7 | atbase 37303 |
. . . . . 6
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
19 | 5, 13, 6 | latlej1 18166 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
20 | 2, 9, 18, 19 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
21 | 5, 6 | latjcl 18157 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
22 | 2, 9, 12, 21 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾)) |
23 | 5, 6 | latjcl 18157 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
24 | 2, 9, 18, 23 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) |
25 | | dalawlem.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
26 | 5, 13, 25 | latlem12 18184 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)))) |
27 | 2, 9, 22, 24, 26 | syl13anc 1371 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)))) |
28 | 15, 20, 27 | mpbi2and 709 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆))) |
29 | 5, 25 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾)) |
30 | 2, 22, 24, 29 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾)) |
31 | 5, 6, 7 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
32 | 1, 16, 10, 31 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
33 | 5, 13, 25 | latmlem1 18187 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)))) |
34 | 2, 9, 30, 32, 33 | syl13anc 1371 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)))) |
35 | 28, 34 | mpd 15 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇))) |
36 | 5, 13, 6 | latlej2 18167 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
37 | 2, 9, 18, 36 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
38 | 5, 13, 6, 25, 7 | atmod3i1 37878 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) → (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))) |
39 | 1, 16, 24, 12, 37, 38 | syl131anc 1382 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇))) |
40 | 39 | oveq2d 7291 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
41 | 5, 25 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
42 | 2, 24, 12, 41 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) |
43 | 5, 13, 6, 25 | latmlej22 18199 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
44 | 2, 12, 24, 9, 43 | syl13anc 1371 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) |
45 | 5, 13, 6, 25, 7 | atmod2i2 37876 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Base‘𝐾)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑇)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))) |
46 | 1, 16, 22, 42, 44, 45 | syl131anc 1382 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (𝑆 ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇)))) |
47 | | hlol 37375 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
48 | 1, 47 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → 𝐾 ∈ OL) |
49 | 5, 25 | latmassOLD 37243 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ (((𝑃 ∨ 𝑄) ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Base‘𝐾) ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾))) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
50 | 48, 22, 24, 32, 49 | syl13anc 1371 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ (𝑆 ∨ 𝑇)))) |
51 | 40, 46, 50 | 3eqtr4rd 2789 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆)) ∧ (𝑆 ∨ 𝑇)) = ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) |
52 | 35, 51 | breqtrd 5100 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) |