Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvbase Structured version   Visualization version   GIF version

Theorem ldualvbase 35147
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualvbase.f 𝐹 = (LFnl‘𝑊)
ldualvbase.d 𝐷 = (LDual‘𝑊)
ldualvbase.v 𝑉 = (Base‘𝐷)
ldualvbase.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualvbase (𝜑𝑉 = 𝐹)

Proof of Theorem ldualvbase
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2799 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2799 . . . 4 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3 eqid 2799 . . . 4 ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))
4 ldualvbase.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvbase.d . . . 4 𝐷 = (LDual‘𝑊)
6 eqid 2799 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2799 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2799 . . . 4 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2799 . . . 4 (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊))
10 eqid 2799 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
11 ldualvbase.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 35146 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6415 . 2 (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvbase.v . 2 𝑉 = (Base‘𝐷)
154fvexi 6425 . . 3 𝐹 ∈ V
16 eqid 2799 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})
1716lmodbase 16339 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
1815, 17ax-mp 5 . 2 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1913, 14, 183eqtr4g 2858 1 (𝜑𝑉 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  Vcvv 3385  cun 3767  {csn 4368  {ctp 4372  cop 4374   × cxp 5310  cres 5314  cfv 6101  (class class class)co 6878  cmpt2 6880  𝑓 cof 7129  ndxcnx 16181  Basecbs 16184  +gcplusg 16267  .rcmulr 16268  Scalarcsca 16270   ·𝑠 cvsca 16271  opprcoppr 18938  LFnlclfn 35078  LDualcld 35144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-sca 16283  df-vsca 16284  df-ldual 35145
This theorem is referenced by:  ldualelvbase  35148  ldualgrplem  35166  lduallmodlem  35173  lclkr  37554  lclkrs  37560  lcfrvalsnN  37562  lcfrlem4  37566  lcfrlem5  37567  lcfrlem6  37568  lcfrlem16  37579  lcfr  37606  lcdvbase  37614  mapdunirnN  37671
  Copyright terms: Public domain W3C validator