Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvbase Structured version   Visualization version   GIF version

Theorem ldualvbase 39104
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualvbase.f 𝐹 = (LFnl‘𝑊)
ldualvbase.d 𝐷 = (LDual‘𝑊)
ldualvbase.v 𝑉 = (Base‘𝐷)
ldualvbase.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualvbase (𝜑𝑉 = 𝐹)

Proof of Theorem ldualvbase
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3 eqid 2729 . . . 4 ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))
4 ldualvbase.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvbase.d . . . 4 𝐷 = (LDual‘𝑊)
6 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2729 . . . 4 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2729 . . . 4 (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊))
10 eqid 2729 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
11 ldualvbase.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 39103 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6830 . 2 (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvbase.v . 2 𝑉 = (Base‘𝐷)
154fvexi 6840 . . 3 𝐹 ∈ V
16 eqid 2729 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})
1716lmodbase 17248 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
1815, 17ax-mp 5 . 2 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1913, 14, 183eqtr4g 2789 1 (𝜑𝑉 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  {csn 4579  {ctp 4583  cop 4585   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  f cof 7615  ndxcnx 17122  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  opprcoppr 20239  LFnlclfn 39035  LDualcld 39101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-sca 17195  df-vsca 17196  df-ldual 39102
This theorem is referenced by:  ldualelvbase  39105  ldualgrplem  39123  lduallmodlem  39130  lclkr  41512  lclkrs  41518  lcfrvalsnN  41520  lcfrlem4  41524  lcfrlem5  41525  lcfrlem6  41526  lcfrlem16  41537  lcfr  41564  lcdvbase  41572  mapdunirnN  41629
  Copyright terms: Public domain W3C validator