Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvbase Structured version   Visualization version   GIF version

Theorem ldualvbase 39126
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualvbase.f 𝐹 = (LFnl‘𝑊)
ldualvbase.d 𝐷 = (LDual‘𝑊)
ldualvbase.v 𝑉 = (Base‘𝐷)
ldualvbase.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualvbase (𝜑𝑉 = 𝐹)

Proof of Theorem ldualvbase
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2730 . . . 4 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3 eqid 2730 . . . 4 ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))
4 ldualvbase.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvbase.d . . . 4 𝐷 = (LDual‘𝑊)
6 eqid 2730 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2730 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2730 . . . 4 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
9 eqid 2730 . . . 4 (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊))
10 eqid 2730 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
11 ldualvbase.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 39125 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6865 . 2 (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvbase.v . 2 𝑉 = (Base‘𝐷)
154fvexi 6875 . . 3 𝐹 ∈ V
16 eqid 2730 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})
1716lmodbase 17296 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})))
1815, 17ax-mp 5 . 2 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓𝐹 ↦ (𝑓f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))
1913, 14, 183eqtr4g 2790 1 (𝜑𝑉 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  {csn 4592  {ctp 4596  cop 4598   × cxp 5639  cres 5643  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  opprcoppr 20252  LFnlclfn 39057  LDualcld 39123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-sca 17243  df-vsca 17244  df-ldual 39124
This theorem is referenced by:  ldualelvbase  39127  ldualgrplem  39145  lduallmodlem  39152  lclkr  41534  lclkrs  41540  lcfrvalsnN  41542  lcfrlem4  41546  lcfrlem5  41547  lcfrlem6  41548  lcfrlem16  41559  lcfr  41586  lcdvbase  41594  mapdunirnN  41651
  Copyright terms: Public domain W3C validator