| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvbase | Structured version Visualization version GIF version | ||
| Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvbase.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvbase.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvbase.v | ⊢ 𝑉 = (Base‘𝐷) |
| ldualvbase.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ldualvbase | ⊢ (𝜑 → 𝑉 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . 4 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 3 | eqid 2736 | . . . 4 ⊢ ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) | |
| 4 | ldualvbase.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | ldualvbase.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 6 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | eqid 2736 | . . . 4 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 9 | eqid 2736 | . . . 4 ⊢ (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊)) | |
| 10 | eqid 2736 | . . . 4 ⊢ (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) | |
| 11 | ldualvbase.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 39148 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉})) |
| 13 | 12 | fveq2d 6885 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}))) |
| 14 | ldualvbase.v | . 2 ⊢ 𝑉 = (Base‘𝐷) | |
| 15 | 4 | fvexi 6895 | . . 3 ⊢ 𝐹 ∈ V |
| 16 | eqid 2736 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}) | |
| 17 | 16 | lmodbase 17345 | . . 3 ⊢ (𝐹 ∈ V → 𝐹 = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}))) |
| 18 | 15, 17 | ax-mp 5 | . 2 ⊢ 𝐹 = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉})) |
| 19 | 13, 14, 18 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → 𝑉 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 {ctp 4610 〈cop 4612 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ∘f cof 7674 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 opprcoppr 20301 LFnlclfn 39080 LDualcld 39146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-sca 17292 df-vsca 17293 df-ldual 39147 |
| This theorem is referenced by: ldualelvbase 39150 ldualgrplem 39168 lduallmodlem 39175 lclkr 41557 lclkrs 41563 lcfrvalsnN 41565 lcfrlem4 41569 lcfrlem5 41570 lcfrlem6 41571 lcfrlem16 41582 lcfr 41609 lcdvbase 41617 mapdunirnN 41674 |
| Copyright terms: Public domain | W3C validator |