| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvbase | Structured version Visualization version GIF version | ||
| Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvbase.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvbase.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvbase.v | ⊢ 𝑉 = (Base‘𝐷) |
| ldualvbase.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ldualvbase | ⊢ (𝜑 → 𝑉 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 3 | eqid 2729 | . . . 4 ⊢ ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) | |
| 4 | ldualvbase.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | ldualvbase.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | eqid 2729 | . . . 4 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 9 | eqid 2729 | . . . 4 ⊢ (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊)) | |
| 10 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) | |
| 11 | ldualvbase.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 39103 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉})) |
| 13 | 12 | fveq2d 6830 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}))) |
| 14 | ldualvbase.v | . 2 ⊢ 𝑉 = (Base‘𝐷) | |
| 15 | 4 | fvexi 6840 | . . 3 ⊢ 𝐹 ∈ V |
| 16 | eqid 2729 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}) | |
| 17 | 16 | lmodbase 17248 | . . 3 ⊢ (𝐹 ∈ V → 𝐹 = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉}))) |
| 18 | 15, 17 | ax-mp 5 | . 2 ⊢ 𝐹 = (Base‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑊))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))〉})) |
| 19 | 13, 14, 18 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 𝑉 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {csn 4579 {ctp 4583 〈cop 4585 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ∘f cof 7615 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 opprcoppr 20239 LFnlclfn 39035 LDualcld 39101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-sca 17195 df-vsca 17196 df-ldual 39102 |
| This theorem is referenced by: ldualelvbase 39105 ldualgrplem 39123 lduallmodlem 39130 lclkr 41512 lclkrs 41518 lcfrvalsnN 41520 lcfrlem4 41524 lcfrlem5 41525 lcfrlem6 41526 lcfrlem16 41537 lcfr 41564 lcdvbase 41572 mapdunirnN 41629 |
| Copyright terms: Public domain | W3C validator |