![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvbase | Structured version Visualization version GIF version |
Description: The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualvbase.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvbase.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvbase.v | ⊢ 𝑉 = (Base‘𝐷) |
ldualvbase.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
Ref | Expression |
---|---|
ldualvbase | ⊢ (𝜑 → 𝑉 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2732 | . . . 4 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
3 | eqid 2732 | . . . 4 ⊢ ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹)) | |
4 | ldualvbase.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualvbase.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | eqid 2732 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | eqid 2732 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
8 | eqid 2732 | . . . 4 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
9 | eqid 2732 | . . . 4 ⊢ (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊)) | |
10 | eqid 2732 | . . . 4 ⊢ (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))) | |
11 | ldualvbase.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 37990 | . . 3 ⊢ (𝜑 → 𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})) |
13 | 12 | fveq2d 6895 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))) |
14 | ldualvbase.v | . 2 ⊢ 𝑉 = (Base‘𝐷) | |
15 | 4 | fvexi 6905 | . . 3 ⊢ 𝐹 ∈ V |
16 | eqid 2732 | . . . 4 ⊢ ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}) | |
17 | 16 | lmodbase 17270 | . . 3 ⊢ (𝐹 ∈ V → 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩}))) |
18 | 15, 17 | ax-mp 5 | . 2 ⊢ 𝐹 = (Base‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑊)) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑊))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑊)), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))⟩})) |
19 | 13, 14, 18 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → 𝑉 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 {csn 4628 {ctp 4632 ⟨cop 4634 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ∘f cof 7667 ndxcnx 17125 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 opprcoppr 20148 LFnlclfn 37922 LDualcld 37988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ldual 37989 |
This theorem is referenced by: ldualelvbase 37992 ldualgrplem 38010 lduallmodlem 38017 lclkr 40399 lclkrs 40405 lcfrvalsnN 40407 lcfrlem4 40411 lcfrlem5 40412 lcfrlem6 40413 lcfrlem16 40424 lcfr 40451 lcdvbase 40459 mapdunirnN 40516 |
Copyright terms: Public domain | W3C validator |