Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvs | Structured version Visualization version GIF version |
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualfvs.m | ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) |
Ref | Expression |
---|---|
ldualfvs | ⊢ (𝜑 → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2739 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2739 | . . . 4 ⊢ ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) | |
4 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
8 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
9 | eqid 2739 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2739 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
11 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 37118 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
13 | 12 | fveq2d 6772 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
14 | ldualfvs.s | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
15 | ldualfvs.m | . . 3 ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
16 | 7 | fvexi 6782 | . . . . 5 ⊢ 𝐾 ∈ V |
17 | 4 | fvexi 6782 | . . . . 5 ⊢ 𝐹 ∈ V |
18 | 16, 17 | mpoex 7906 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V |
19 | eqid 2739 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) | |
20 | 19 | lmodvsca 17020 | . . . 4 ⊢ ((𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V → (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
21 | 18, 20 | ax-mp 5 | . . 3 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
22 | 15, 21 | eqtri 2767 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
23 | 13, 14, 22 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → ∙ = · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∪ cun 3889 {csn 4566 {ctp 4570 〈cop 4572 × cxp 5586 ↾ cres 5590 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ∘f cof 7522 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 Scalarcsca 16946 ·𝑠 cvsca 16947 opprcoppr 19842 LFnlclfn 37050 LDualcld 37116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-sca 16959 df-vsca 16960 df-ldual 37117 |
This theorem is referenced by: ldualvs 37130 |
Copyright terms: Public domain | W3C validator |