![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvs | Structured version Visualization version GIF version |
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | β’ πΉ = (LFnlβπ) |
ldualfvs.v | β’ π = (Baseβπ) |
ldualfvs.r | β’ π = (Scalarβπ) |
ldualfvs.k | β’ πΎ = (Baseβπ ) |
ldualfvs.t | β’ Γ = (.rβπ ) |
ldualfvs.d | β’ π· = (LDualβπ) |
ldualfvs.s | β’ β = ( Β·π βπ·) |
ldualfvs.w | β’ (π β π β π) |
ldualfvs.m | β’ Β· = (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) |
Ref | Expression |
---|---|
ldualfvs | β’ (π β β = Β· ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.v | . . . 4 β’ π = (Baseβπ) | |
2 | eqid 2724 | . . . 4 β’ (+gβπ ) = (+gβπ ) | |
3 | eqid 2724 | . . . 4 β’ ( βf (+gβπ ) βΎ (πΉ Γ πΉ)) = ( βf (+gβπ ) βΎ (πΉ Γ πΉ)) | |
4 | ldualfvs.f | . . . 4 β’ πΉ = (LFnlβπ) | |
5 | ldualfvs.d | . . . 4 β’ π· = (LDualβπ) | |
6 | ldualfvs.r | . . . 4 β’ π = (Scalarβπ) | |
7 | ldualfvs.k | . . . 4 β’ πΎ = (Baseβπ ) | |
8 | ldualfvs.t | . . . 4 β’ Γ = (.rβπ ) | |
9 | eqid 2724 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
10 | eqid 2724 | . . . 4 β’ (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) = (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) | |
11 | ldualfvs.w | . . . 4 β’ (π β π β π) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 38451 | . . 3 β’ (π β π· = ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©})) |
13 | 12 | fveq2d 6885 | . 2 β’ (π β ( Β·π βπ·) = ( Β·π β({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©}))) |
14 | ldualfvs.s | . 2 β’ β = ( Β·π βπ·) | |
15 | ldualfvs.m | . . 3 β’ Β· = (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) | |
16 | 7 | fvexi 6895 | . . . . 5 β’ πΎ β V |
17 | 4 | fvexi 6895 | . . . . 5 β’ πΉ β V |
18 | 16, 17 | mpoex 8059 | . . . 4 β’ (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) β V |
19 | eqid 2724 | . . . . 5 β’ ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©}) = ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©}) | |
20 | 19 | lmodvsca 17272 | . . . 4 β’ ((π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) β V β (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) = ( Β·π β({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©}))) |
21 | 18, 20 | ax-mp 5 | . . 3 β’ (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) = ( Β·π β({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©})) |
22 | 15, 21 | eqtri 2752 | . 2 β’ Β· = ( Β·π β({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ( βf (+gβπ ) βΎ (πΉ Γ πΉ))β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))β©})) |
23 | 13, 14, 22 | 3eqtr4g 2789 | 1 β’ (π β β = Β· ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 βͺ cun 3938 {csn 4620 {ctp 4624 β¨cop 4626 Γ cxp 5664 βΎ cres 5668 βcfv 6533 (class class class)co 7401 β cmpo 7403 βf cof 7661 ndxcnx 17124 Basecbs 17142 +gcplusg 17195 .rcmulr 17196 Scalarcsca 17198 Β·π cvsca 17199 opprcoppr 20224 LFnlclfn 38383 LDualcld 38449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-slot 17113 df-ndx 17125 df-base 17143 df-plusg 17208 df-sca 17211 df-vsca 17212 df-ldual 38450 |
This theorem is referenced by: ldualvs 38463 |
Copyright terms: Public domain | W3C validator |