Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvs Structured version   Visualization version   GIF version

Theorem ldualfvs 39159
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualfvs.m · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
Assertion
Ref Expression
ldualfvs (𝜑 = · )
Distinct variable groups:   𝑓,𝑘,𝐹   𝑓,𝐾,𝑘   × ,𝑓,𝑘   𝑓,𝑉,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝑌(𝑓,𝑘)

Proof of Theorem ldualfvs
StepHypRef Expression
1 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2736 . . . 4 (+g𝑅) = (+g𝑅)
3 eqid 2736 . . . 4 ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))
4 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
7 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
8 ldualfvs.t . . . 4 × = (.r𝑅)
9 eqid 2736 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2736 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
11 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 39148 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
1312fveq2d 6885 . 2 (𝜑 → ( ·𝑠𝐷) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
14 ldualfvs.s . 2 = ( ·𝑠𝐷)
15 ldualfvs.m . . 3 · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
167fvexi 6895 . . . . 5 𝐾 ∈ V
174fvexi 6895 . . . . 5 𝐹 ∈ V
1816, 17mpoex 8083 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V
19 eqid 2736 . . . . 5 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})
2019lmodvsca 17348 . . . 4 ((𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V → (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
2118, 20ax-mp 5 . . 3 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2215, 21eqtri 2759 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2796 1 (𝜑 = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  {csn 4606  {ctp 4610  cop 4612   × cxp 5657  cres 5661  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  ndxcnx 17217  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  opprcoppr 20301  LFnlclfn 39080  LDualcld 39146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-sca 17292  df-vsca 17293  df-ldual 39147
This theorem is referenced by:  ldualvs  39160
  Copyright terms: Public domain W3C validator