Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvs Structured version   Visualization version   GIF version

Theorem ldualfvs 37350
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualfvs.m · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
Assertion
Ref Expression
ldualfvs (𝜑 = · )
Distinct variable groups:   𝑓,𝑘,𝐹   𝑓,𝐾,𝑘   × ,𝑓,𝑘   𝑓,𝑉,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝑌(𝑓,𝑘)

Proof of Theorem ldualfvs
StepHypRef Expression
1 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2736 . . . 4 (+g𝑅) = (+g𝑅)
3 eqid 2736 . . . 4 ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))
4 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
7 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
8 ldualfvs.t . . . 4 × = (.r𝑅)
9 eqid 2736 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2736 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
11 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 37339 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
1312fveq2d 6808 . 2 (𝜑 → ( ·𝑠𝐷) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
14 ldualfvs.s . 2 = ( ·𝑠𝐷)
15 ldualfvs.m . . 3 · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
167fvexi 6818 . . . . 5 𝐾 ∈ V
174fvexi 6818 . . . . 5 𝐹 ∈ V
1816, 17mpoex 7952 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V
19 eqid 2736 . . . . 5 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})
2019lmodvsca 17088 . . . 4 ((𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V → (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
2118, 20ax-mp 5 . . 3 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2215, 21eqtri 2764 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2801 1 (𝜑 = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  cun 3890  {csn 4565  {ctp 4569  cop 4571   × cxp 5598  cres 5602  cfv 6458  (class class class)co 7307  cmpo 7309  f cof 7563  ndxcnx 16943  Basecbs 16961  +gcplusg 17011  .rcmulr 17012  Scalarcsca 17014   ·𝑠 cvsca 17015  opprcoppr 19910  LFnlclfn 37271  LDualcld 37337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-n0 12284  df-z 12370  df-uz 12633  df-fz 13290  df-struct 16897  df-slot 16932  df-ndx 16944  df-base 16962  df-plusg 17024  df-sca 17027  df-vsca 17028  df-ldual 37338
This theorem is referenced by:  ldualvs  37351
  Copyright terms: Public domain W3C validator