Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvs Structured version   Visualization version   GIF version

Theorem ldualfvs 36304
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualfvs.m · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
Assertion
Ref Expression
ldualfvs (𝜑 = · )
Distinct variable groups:   𝑓,𝑘,𝐹   𝑓,𝐾,𝑘   × ,𝑓,𝑘   𝑓,𝑉,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝑌(𝑓,𝑘)

Proof of Theorem ldualfvs
StepHypRef Expression
1 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
3 eqid 2821 . . . 4 ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))
4 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
7 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
8 ldualfvs.t . . . 4 × = (.r𝑅)
9 eqid 2821 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2821 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
11 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 36293 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
1312fveq2d 6660 . 2 (𝜑 → ( ·𝑠𝐷) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
14 ldualfvs.s . 2 = ( ·𝑠𝐷)
15 ldualfvs.m . . 3 · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
167fvexi 6670 . . . . 5 𝐾 ∈ V
174fvexi 6670 . . . . 5 𝐹 ∈ V
1816, 17mpoex 7763 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V
19 eqid 2821 . . . . 5 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})
2019lmodvsca 16623 . . . 4 ((𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V → (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
2118, 20ax-mp 5 . . 3 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2215, 21eqtri 2844 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2881 1 (𝜑 = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3486  cun 3922  {csn 4553  {ctp 4557  cop 4559   × cxp 5539  cres 5543  cfv 6341  (class class class)co 7142  cmpo 7144  f cof 7393  ndxcnx 16463  Basecbs 16466  +gcplusg 16548  .rcmulr 16549  Scalarcsca 16551   ·𝑠 cvsca 16552  opprcoppr 19355  LFnlclfn 36225  LDualcld 36291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-plusg 16561  df-sca 16564  df-vsca 16565  df-ldual 36292
This theorem is referenced by:  ldualvs  36305
  Copyright terms: Public domain W3C validator