Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvs | Structured version Visualization version GIF version |
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualfvs.m | ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) |
Ref | Expression |
---|---|
ldualfvs | ⊢ (𝜑 → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2737 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2737 | . . . 4 ⊢ ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) | |
4 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
8 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
9 | eqid 2737 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2737 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
11 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 37359 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
13 | 12 | fveq2d 6816 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
14 | ldualfvs.s | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
15 | ldualfvs.m | . . 3 ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
16 | 7 | fvexi 6826 | . . . . 5 ⊢ 𝐾 ∈ V |
17 | 4 | fvexi 6826 | . . . . 5 ⊢ 𝐹 ∈ V |
18 | 16, 17 | mpoex 7967 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V |
19 | eqid 2737 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) | |
20 | 19 | lmodvsca 17116 | . . . 4 ⊢ ((𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V → (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
21 | 18, 20 | ax-mp 5 | . . 3 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
22 | 15, 21 | eqtri 2765 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
23 | 13, 14, 22 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → ∙ = · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 {csn 4571 {ctp 4575 〈cop 4577 × cxp 5606 ↾ cres 5610 ‘cfv 6466 (class class class)co 7317 ∈ cmpo 7319 ∘f cof 7573 ndxcnx 16971 Basecbs 16989 +gcplusg 17039 .rcmulr 17040 Scalarcsca 17042 ·𝑠 cvsca 17043 opprcoppr 19936 LFnlclfn 37291 LDualcld 37357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-struct 16925 df-slot 16960 df-ndx 16972 df-base 16990 df-plusg 17052 df-sca 17055 df-vsca 17056 df-ldual 37358 |
This theorem is referenced by: ldualvs 37371 |
Copyright terms: Public domain | W3C validator |