| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvs | Structured version Visualization version GIF version | ||
| Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
| ldualfvs.t | ⊢ × = (.r‘𝑅) |
| ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
| ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
| ldualfvs.m | ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) |
| Ref | Expression |
|---|---|
| ldualfvs | ⊢ (𝜑 → ∙ = · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹)) | |
| 4 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 6 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 9 | eqid 2731 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
| 11 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 39172 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
| 13 | 12 | fveq2d 6826 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
| 14 | ldualfvs.s | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
| 15 | ldualfvs.m | . . 3 ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
| 16 | 7 | fvexi 6836 | . . . . 5 ⊢ 𝐾 ∈ V |
| 17 | 4 | fvexi 6836 | . . . . 5 ⊢ 𝐹 ∈ V |
| 18 | 16, 17 | mpoex 8011 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V |
| 19 | eqid 2731 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}) | |
| 20 | 19 | lmodvsca 17233 | . . . 4 ⊢ ((𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ∈ V → (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉}))) |
| 21 | 18, 20 | ax-mp 5 | . . 3 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
| 22 | 15, 21 | eqtri 2754 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ( ∘f (+g‘𝑅) ↾ (𝐹 × 𝐹))〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))〉})) |
| 23 | 13, 14, 22 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → ∙ = · ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4573 {ctp 4577 〈cop 4579 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ∘f cof 7608 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 opprcoppr 20254 LFnlclfn 39104 LDualcld 39170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ldual 39171 |
| This theorem is referenced by: ldualvs 39184 |
| Copyright terms: Public domain | W3C validator |