Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvs Structured version   Visualization version   GIF version

Theorem ldualfvs 36390
Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualfvs.f 𝐹 = (LFnl‘𝑊)
ldualfvs.v 𝑉 = (Base‘𝑊)
ldualfvs.r 𝑅 = (Scalar‘𝑊)
ldualfvs.k 𝐾 = (Base‘𝑅)
ldualfvs.t × = (.r𝑅)
ldualfvs.d 𝐷 = (LDual‘𝑊)
ldualfvs.s = ( ·𝑠𝐷)
ldualfvs.w (𝜑𝑊𝑌)
ldualfvs.m · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
Assertion
Ref Expression
ldualfvs (𝜑 = · )
Distinct variable groups:   𝑓,𝑘,𝐹   𝑓,𝐾,𝑘   × ,𝑓,𝑘   𝑓,𝑉,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑅(𝑓,𝑘)   (𝑓,𝑘)   · (𝑓,𝑘)   𝑌(𝑓,𝑘)

Proof of Theorem ldualfvs
StepHypRef Expression
1 ldualfvs.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2822 . . . 4 (+g𝑅) = (+g𝑅)
3 eqid 2822 . . . 4 ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹)) = ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))
4 ldualfvs.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualfvs.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualfvs.r . . . 4 𝑅 = (Scalar‘𝑊)
7 ldualfvs.k . . . 4 𝐾 = (Base‘𝑅)
8 ldualfvs.t . . . 4 × = (.r𝑅)
9 eqid 2822 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2822 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
11 ldualfvs.w . . . 4 (𝜑𝑊𝑌)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 36379 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
1312fveq2d 6656 . 2 (𝜑 → ( ·𝑠𝐷) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
14 ldualfvs.s . 2 = ( ·𝑠𝐷)
15 ldualfvs.m . . 3 · = (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))
167fvexi 6666 . . . . 5 𝐾 ∈ V
174fvexi 6666 . . . . 5 𝐹 ∈ V
1816, 17mpoex 7764 . . . 4 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V
19 eqid 2822 . . . . 5 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})
2019lmodvsca 16631 . . . 4 ((𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) ∈ V → (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩})))
2118, 20ax-mp 5 . . 3 (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘}))) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2215, 21eqtri 2845 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ (𝐹 × 𝐹))⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘𝐾, 𝑓𝐹 ↦ (𝑓f × (𝑉 × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2882 1 (𝜑 = · )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2114  Vcvv 3469  cun 3906  {csn 4539  {ctp 4543  cop 4545   × cxp 5530  cres 5534  cfv 6334  (class class class)co 7140  cmpo 7142  f cof 7392  ndxcnx 16471  Basecbs 16474  +gcplusg 16556  .rcmulr 16557  Scalarcsca 16559   ·𝑠 cvsca 16560  opprcoppr 19366  LFnlclfn 36311  LDualcld 36377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-sca 16572  df-vsca 16573  df-ldual 36378
This theorem is referenced by:  ldualvs  36391
  Copyright terms: Public domain W3C validator