![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualsca | Structured version Visualization version GIF version |
Description: The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualsca.f | โข ๐น = (Scalarโ๐) |
ldualsca.o | โข ๐ = (opprโ๐น) |
ldualsca.d | โข ๐ท = (LDualโ๐) |
ldualsca.r | โข ๐ = (Scalarโ๐ท) |
ldualsca.w | โข (๐ โ ๐ โ ๐) |
Ref | Expression |
---|---|
ldualsca | โข (๐ โ ๐ = ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 โข (Baseโ๐) = (Baseโ๐) | |
2 | eqid 2728 | . . . 4 โข (+gโ๐น) = (+gโ๐น) | |
3 | eqid 2728 | . . . 4 โข ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐))) = ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐))) | |
4 | eqid 2728 | . . . 4 โข (LFnlโ๐) = (LFnlโ๐) | |
5 | ldualsca.d | . . . 4 โข ๐ท = (LDualโ๐) | |
6 | ldualsca.f | . . . 4 โข ๐น = (Scalarโ๐) | |
7 | eqid 2728 | . . . 4 โข (Baseโ๐น) = (Baseโ๐น) | |
8 | eqid 2728 | . . . 4 โข (.rโ๐น) = (.rโ๐น) | |
9 | ldualsca.o | . . . 4 โข ๐ = (opprโ๐น) | |
10 | eqid 2728 | . . . 4 โข (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐}))) = (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐}))) | |
11 | ldualsca.w | . . . 4 โข (๐ โ ๐ โ ๐) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 38637 | . . 3 โข (๐ โ ๐ท = ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ})) |
13 | 12 | fveq2d 6906 | . 2 โข (๐ โ (Scalarโ๐ท) = (Scalarโ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ}))) |
14 | ldualsca.r | . 2 โข ๐ = (Scalarโ๐ท) | |
15 | 9 | fvexi 6916 | . . 3 โข ๐ โ V |
16 | eqid 2728 | . . . 4 โข ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ}) = ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ}) | |
17 | 16 | lmodsca 17318 | . . 3 โข (๐ โ V โ ๐ = (Scalarโ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ}))) |
18 | 15, 17 | ax-mp 5 | . 2 โข ๐ = (Scalarโ({โจ(Baseโndx), (LFnlโ๐)โฉ, โจ(+gโndx), ( โf (+gโ๐น) โพ ((LFnlโ๐) ร (LFnlโ๐)))โฉ, โจ(Scalarโndx), ๐โฉ} โช {โจ( ยท๐ โndx), (๐ โ (Baseโ๐น), ๐ โ (LFnlโ๐) โฆ (๐ โf (.rโ๐น)((Baseโ๐) ร {๐})))โฉ})) |
19 | 13, 14, 18 | 3eqtr4g 2793 | 1 โข (๐ โ ๐ = ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 Vcvv 3473 โช cun 3947 {csn 4632 {ctp 4636 โจcop 4638 ร cxp 5680 โพ cres 5684 โcfv 6553 (class class class)co 7426 โ cmpo 7428 โf cof 7690 ndxcnx 17171 Basecbs 17189 +gcplusg 17242 .rcmulr 17243 Scalarcsca 17245 ยท๐ cvsca 17246 opprcoppr 20286 LFnlclfn 38569 LDualcld 38635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-struct 17125 df-slot 17160 df-ndx 17172 df-base 17190 df-plusg 17255 df-sca 17258 df-vsca 17259 df-ldual 38636 |
This theorem is referenced by: ldualsbase 38645 ldualsaddN 38646 ldualsmul 38647 ldual0 38659 ldual1 38660 ldualneg 38661 lduallmodlem 38664 lduallvec 38666 ldualvsub 38667 lcdsca 41112 |
Copyright terms: Public domain | W3C validator |