Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualsca Structured version   Visualization version   GIF version

Theorem ldualsca 39241
Description: The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualsca.f 𝐹 = (Scalar‘𝑊)
ldualsca.o 𝑂 = (oppr𝐹)
ldualsca.d 𝐷 = (LDual‘𝑊)
ldualsca.r 𝑅 = (Scalar‘𝐷)
ldualsca.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualsca (𝜑𝑅 = 𝑂)

Proof of Theorem ldualsca
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . . 4 (+g𝐹) = (+g𝐹)
3 eqid 2731 . . . 4 ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊))) = ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))
4 eqid 2731 . . . 4 (LFnl‘𝑊) = (LFnl‘𝑊)
5 ldualsca.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualsca.f . . . 4 𝐹 = (Scalar‘𝑊)
7 eqid 2731 . . . 4 (Base‘𝐹) = (Base‘𝐹)
8 eqid 2731 . . . 4 (.r𝐹) = (.r𝐹)
9 ldualsca.o . . . 4 𝑂 = (oppr𝐹)
10 eqid 2731 . . . 4 (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))
11 ldualsca.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 39234 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6826 . 2 (𝜑 → (Scalar‘𝐷) = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualsca.r . 2 𝑅 = (Scalar‘𝐷)
159fvexi 6836 . . 3 𝑂 ∈ V
16 eqid 2731 . . . 4 ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})
1716lmodsca 17232 . . 3 (𝑂 ∈ V → 𝑂 = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})))
1815, 17ax-mp 5 . 2 𝑂 = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}))
1913, 14, 183eqtr4g 2791 1 (𝜑𝑅 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  {csn 4573  {ctp 4577  cop 4579   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  opprcoppr 20254  LFnlclfn 39166  LDualcld 39232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-sca 17177  df-vsca 17178  df-ldual 39233
This theorem is referenced by:  ldualsbase  39242  ldualsaddN  39243  ldualsmul  39244  ldual0  39256  ldual1  39257  ldualneg  39258  lduallmodlem  39261  lduallvec  39263  ldualvsub  39264  lcdsca  41708
  Copyright terms: Public domain W3C validator