Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualsca Structured version   Visualization version   GIF version

Theorem ldualsca 37146
Description: The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualsca.f 𝐹 = (Scalar‘𝑊)
ldualsca.o 𝑂 = (oppr𝐹)
ldualsca.d 𝐷 = (LDual‘𝑊)
ldualsca.r 𝑅 = (Scalar‘𝐷)
ldualsca.w (𝜑𝑊𝑋)
Assertion
Ref Expression
ldualsca (𝜑𝑅 = 𝑂)

Proof of Theorem ldualsca
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (+g𝐹) = (+g𝐹)
3 eqid 2738 . . . 4 ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊))) = ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))
4 eqid 2738 . . . 4 (LFnl‘𝑊) = (LFnl‘𝑊)
5 ldualsca.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualsca.f . . . 4 𝐹 = (Scalar‘𝑊)
7 eqid 2738 . . . 4 (Base‘𝐹) = (Base‘𝐹)
8 eqid 2738 . . . 4 (.r𝐹) = (.r𝐹)
9 ldualsca.o . . . 4 𝑂 = (oppr𝐹)
10 eqid 2738 . . . 4 (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))
11 ldualsca.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 37139 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6778 . 2 (𝜑 → (Scalar‘𝐷) = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualsca.r . 2 𝑅 = (Scalar‘𝐷)
159fvexi 6788 . . 3 𝑂 ∈ V
16 eqid 2738 . . . 4 ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})
1716lmodsca 17038 . . 3 (𝑂 ∈ V → 𝑂 = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩})))
1815, 17ax-mp 5 . 2 𝑂 = (Scalar‘({⟨(Base‘ndx), (LFnl‘𝑊)⟩, ⟨(+g‘ndx), ( ∘f (+g𝐹) ↾ ((LFnl‘𝑊) × (LFnl‘𝑊)))⟩, ⟨(Scalar‘ndx), 𝑂⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝐹), 𝑓 ∈ (LFnl‘𝑊) ↦ (𝑓f (.r𝐹)((Base‘𝑊) × {𝑘})))⟩}))
1913, 14, 183eqtr4g 2803 1 (𝜑𝑅 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  {csn 4561  {ctp 4565  cop 4567   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  opprcoppr 19861  LFnlclfn 37071  LDualcld 37137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-sca 16978  df-vsca 16979  df-ldual 37138
This theorem is referenced by:  ldualsbase  37147  ldualsaddN  37148  ldualsmul  37149  ldual0  37161  ldual1  37162  ldualneg  37163  lduallmodlem  37166  lduallvec  37168  ldualvsub  37169  lcdsca  39613
  Copyright terms: Public domain W3C validator