Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvadd Structured version   Visualization version   GIF version

Theorem ldualfvadd 37590
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualfvadd.q = ( ∘f + ↾ (𝐹 × 𝐹))
Assertion
Ref Expression
ldualfvadd (𝜑 = )

Proof of Theorem ldualfvadd
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 ldualvadd.a . . . 4 + = (+g𝑅)
3 ldualfvadd.q . . . 4 = ( ∘f + ↾ (𝐹 × 𝐹))
4 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2736 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2736 . . . 4 (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))
11 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 37587 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6846 . 2 (𝜑 → (+g𝐷) = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvadd.p . 2 = (+g𝐷)
154fvexi 6856 . . . . 5 𝐹 ∈ V
16 id 22 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
1716, 16ofmresex 7918 . . . . 5 (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V)
1815, 17ax-mp 5 . . . 4 ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V
193, 18eqeltri 2834 . . 3 ∈ V
20 eqid 2736 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})
2120lmodplusg 17208 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
2219, 21ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2801 1 (𝜑 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  {csn 4586  {ctp 4590  cop 4592   × cxp 5631  cres 5635  cfv 6496  (class class class)co 7357  cmpo 7359  f cof 7615  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  opprcoppr 20048  LFnlclfn 37519  LDualcld 37585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-sca 17149  df-vsca 17150  df-ldual 37586
This theorem is referenced by:  ldualvadd  37591
  Copyright terms: Public domain W3C validator