| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvadd | Structured version Visualization version GIF version | ||
| Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvadd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvadd.a | ⊢ + = (+g‘𝑅) |
| ldualvadd.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvadd.p | ⊢ ✚ = (+g‘𝐷) |
| ldualvadd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| ldualfvadd.q | ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) |
| Ref | Expression |
|---|---|
| ldualfvadd | ⊢ (𝜑 → ✚ = ⨣ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | ldualvadd.a | . . . 4 ⊢ + = (+g‘𝑅) | |
| 3 | ldualfvadd.q | . . . 4 ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) | |
| 4 | ldualvadd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | ldualvadd.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 6 | ldualvadd.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | eqid 2731 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) | |
| 11 | ldualvadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 39164 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
| 13 | 12 | fveq2d 6821 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
| 14 | ldualvadd.p | . 2 ⊢ ✚ = (+g‘𝐷) | |
| 15 | 4 | fvexi 6831 | . . . . 5 ⊢ 𝐹 ∈ V |
| 16 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ V → 𝐹 ∈ V) | |
| 17 | 16, 16 | ofmresex 7912 | . . . . 5 ⊢ (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V) |
| 18 | 15, 17 | ax-mp 5 | . . . 4 ⊢ ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V |
| 19 | 3, 18 | eqeltri 2827 | . . 3 ⊢ ⨣ ∈ V |
| 20 | eqid 2731 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) | |
| 21 | 20 | lmodplusg 17226 | . . 3 ⊢ ( ⨣ ∈ V → ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
| 22 | 19, 21 | ax-mp 5 | . 2 ⊢ ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
| 23 | 13, 14, 22 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → ✚ = ⨣ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 {csn 4571 {ctp 4575 〈cop 4577 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ∘f cof 7603 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 opprcoppr 20249 LFnlclfn 39096 LDualcld 39162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-sca 17172 df-vsca 17173 df-ldual 39163 |
| This theorem is referenced by: ldualvadd 39168 |
| Copyright terms: Public domain | W3C validator |