![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvadd | Structured version Visualization version GIF version |
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvadd.f | β’ πΉ = (LFnlβπ) |
ldualvadd.r | β’ π = (Scalarβπ) |
ldualvadd.a | β’ + = (+gβπ ) |
ldualvadd.d | β’ π· = (LDualβπ) |
ldualvadd.p | β’ β = (+gβπ·) |
ldualvadd.w | β’ (π β π β π) |
ldualfvadd.q | ⒠⨣ = ( βf + βΎ (πΉ Γ πΉ)) |
Ref | Expression |
---|---|
ldualfvadd | β’ (π β β = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | ldualvadd.a | . . . 4 β’ + = (+gβπ ) | |
3 | ldualfvadd.q | . . . 4 ⒠⨣ = ( βf + βΎ (πΉ Γ πΉ)) | |
4 | ldualvadd.f | . . . 4 β’ πΉ = (LFnlβπ) | |
5 | ldualvadd.d | . . . 4 β’ π· = (LDualβπ) | |
6 | ldualvadd.r | . . . 4 β’ π = (Scalarβπ) | |
7 | eqid 2732 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
8 | eqid 2732 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
9 | eqid 2732 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
10 | eqid 2732 | . . . 4 β’ (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π}))) = (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π}))) | |
11 | ldualvadd.w | . . . 4 β’ (π β π β π) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 37990 | . . 3 β’ (π β π· = ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©})) |
13 | 12 | fveq2d 6895 | . 2 β’ (π β (+gβπ·) = (+gβ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©}))) |
14 | ldualvadd.p | . 2 β’ β = (+gβπ·) | |
15 | 4 | fvexi 6905 | . . . . 5 β’ πΉ β V |
16 | id 22 | . . . . . 6 β’ (πΉ β V β πΉ β V) | |
17 | 16, 16 | ofmresex 7971 | . . . . 5 β’ (πΉ β V β ( βf + βΎ (πΉ Γ πΉ)) β V) |
18 | 15, 17 | ax-mp 5 | . . . 4 β’ ( βf + βΎ (πΉ Γ πΉ)) β V |
19 | 3, 18 | eqeltri 2829 | . . 3 ⒠⨣ β V |
20 | eqid 2732 | . . . 4 β’ ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©}) = ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©}) | |
21 | 20 | lmodplusg 17271 | . . 3 β’ ( ⨣ β V β ⨣ = (+gβ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©}))) |
22 | 19, 21 | ax-mp 5 | . 2 ⒠⨣ = (+gβ({β¨(Baseβndx), πΉβ©, β¨(+gβndx), ⨣ β©, β¨(Scalarβndx), (opprβπ )β©} βͺ {β¨( Β·π βndx), (π β (Baseβπ ), π β πΉ β¦ (π βf (.rβπ )((Baseβπ) Γ {π})))β©})) |
23 | 13, 14, 22 | 3eqtr4g 2797 | 1 β’ (π β β = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3946 {csn 4628 {ctp 4632 β¨cop 4634 Γ cxp 5674 βΎ cres 5678 βcfv 6543 (class class class)co 7408 β cmpo 7410 βf cof 7667 ndxcnx 17125 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 Β·π cvsca 17200 opprcoppr 20148 LFnlclfn 37922 LDualcld 37988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ldual 37989 |
This theorem is referenced by: ldualvadd 37994 |
Copyright terms: Public domain | W3C validator |