Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvadd | Structured version Visualization version GIF version |
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvadd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvadd.a | ⊢ + = (+g‘𝑅) |
ldualvadd.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvadd.p | ⊢ ✚ = (+g‘𝐷) |
ldualvadd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
ldualfvadd.q | ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) |
Ref | Expression |
---|---|
ldualfvadd | ⊢ (𝜑 → ✚ = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ldualvadd.a | . . . 4 ⊢ + = (+g‘𝑅) | |
3 | ldualfvadd.q | . . . 4 ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) | |
4 | ldualvadd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualvadd.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualvadd.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2758 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2758 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | eqid 2758 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2758 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) | |
11 | ldualvadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 36735 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
13 | 12 | fveq2d 6667 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
14 | ldualvadd.p | . 2 ⊢ ✚ = (+g‘𝐷) | |
15 | 4 | fvexi 6677 | . . . . 5 ⊢ 𝐹 ∈ V |
16 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ V → 𝐹 ∈ V) | |
17 | 16, 16 | ofmresex 7696 | . . . . 5 ⊢ (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V) |
18 | 15, 17 | ax-mp 5 | . . . 4 ⊢ ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V |
19 | 3, 18 | eqeltri 2848 | . . 3 ⊢ ⨣ ∈ V |
20 | eqid 2758 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) | |
21 | 20 | lmodplusg 16709 | . . 3 ⊢ ( ⨣ ∈ V → ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
23 | 13, 14, 22 | 3eqtr4g 2818 | 1 ⊢ (𝜑 → ✚ = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 {csn 4525 {ctp 4529 〈cop 4531 × cxp 5526 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ∘f cof 7409 ndxcnx 16551 Basecbs 16554 +gcplusg 16636 .rcmulr 16637 Scalarcsca 16639 ·𝑠 cvsca 16640 opprcoppr 19456 LFnlclfn 36667 LDualcld 36733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-plusg 16649 df-sca 16652 df-vsca 16653 df-ldual 36734 |
This theorem is referenced by: ldualvadd 36739 |
Copyright terms: Public domain | W3C validator |