Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvadd Structured version   Visualization version   GIF version

Theorem ldualfvadd 39167
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualfvadd.q = ( ∘f + ↾ (𝐹 × 𝐹))
Assertion
Ref Expression
ldualfvadd (𝜑 = )

Proof of Theorem ldualfvadd
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 ldualvadd.a . . . 4 + = (+g𝑅)
3 ldualfvadd.q . . . 4 = ( ∘f + ↾ (𝐹 × 𝐹))
4 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2731 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2731 . . . 4 (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))
11 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 39164 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6821 . 2 (𝜑 → (+g𝐷) = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvadd.p . 2 = (+g𝐷)
154fvexi 6831 . . . . 5 𝐹 ∈ V
16 id 22 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
1716, 16ofmresex 7912 . . . . 5 (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V)
1815, 17ax-mp 5 . . . 4 ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V
193, 18eqeltri 2827 . . 3 ∈ V
20 eqid 2731 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})
2120lmodplusg 17226 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
2219, 21ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2791 1 (𝜑 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  {csn 4571  {ctp 4575  cop 4577   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341  cmpo 7343  f cof 7603  ndxcnx 17099  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  opprcoppr 20249  LFnlclfn 39096  LDualcld 39162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-sca 17172  df-vsca 17173  df-ldual 39163
This theorem is referenced by:  ldualvadd  39168
  Copyright terms: Public domain W3C validator