Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvadd | Structured version Visualization version GIF version |
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvadd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvadd.a | ⊢ + = (+g‘𝑅) |
ldualvadd.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvadd.p | ⊢ ✚ = (+g‘𝐷) |
ldualvadd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
ldualfvadd.q | ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) |
Ref | Expression |
---|---|
ldualfvadd | ⊢ (𝜑 → ✚ = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ldualvadd.a | . . . 4 ⊢ + = (+g‘𝑅) | |
3 | ldualfvadd.q | . . . 4 ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) | |
4 | ldualvadd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualvadd.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualvadd.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | eqid 2738 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) | |
11 | ldualvadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 37139 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
13 | 12 | fveq2d 6778 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
14 | ldualvadd.p | . 2 ⊢ ✚ = (+g‘𝐷) | |
15 | 4 | fvexi 6788 | . . . . 5 ⊢ 𝐹 ∈ V |
16 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ V → 𝐹 ∈ V) | |
17 | 16, 16 | ofmresex 7828 | . . . . 5 ⊢ (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V) |
18 | 15, 17 | ax-mp 5 | . . . 4 ⊢ ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V |
19 | 3, 18 | eqeltri 2835 | . . 3 ⊢ ⨣ ∈ V |
20 | eqid 2738 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) | |
21 | 20 | lmodplusg 17037 | . . 3 ⊢ ( ⨣ ∈ V → ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
23 | 13, 14, 22 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → ✚ = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 {ctp 4565 〈cop 4567 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ∘f cof 7531 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 opprcoppr 19861 LFnlclfn 37071 LDualcld 37137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-sca 16978 df-vsca 16979 df-ldual 37138 |
This theorem is referenced by: ldualvadd 37143 |
Copyright terms: Public domain | W3C validator |