![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualfvadd | Structured version Visualization version GIF version |
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvadd.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvadd.a | ⊢ + = (+g‘𝑅) |
ldualvadd.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvadd.p | ⊢ ✚ = (+g‘𝐷) |
ldualvadd.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
ldualfvadd.q | ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) |
Ref | Expression |
---|---|
ldualfvadd | ⊢ (𝜑 → ✚ = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ldualvadd.a | . . . 4 ⊢ + = (+g‘𝑅) | |
3 | ldualfvadd.q | . . . 4 ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) | |
4 | ldualvadd.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualvadd.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | ldualvadd.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | eqid 2731 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
10 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘}))) | |
11 | ldualvadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualset 38461 | . . 3 ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
13 | 12 | fveq2d 6895 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
14 | ldualvadd.p | . 2 ⊢ ✚ = (+g‘𝐷) | |
15 | 4 | fvexi 6905 | . . . . 5 ⊢ 𝐹 ∈ V |
16 | id 22 | . . . . . 6 ⊢ (𝐹 ∈ V → 𝐹 ∈ V) | |
17 | 16, 16 | ofmresex 7976 | . . . . 5 ⊢ (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V) |
18 | 15, 17 | ax-mp 5 | . . . 4 ⊢ ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V |
19 | 3, 18 | eqeltri 2828 | . . 3 ⊢ ⨣ ∈ V |
20 | eqid 2731 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}) | |
21 | 20 | lmodplusg 17279 | . . 3 ⊢ ( ⨣ ∈ V → ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉}))) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ⨣ = (+g‘({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ⨣ 〉, 〈(Scalar‘ndx), (oppr‘𝑅)〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑘})))〉})) |
23 | 13, 14, 22 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → ✚ = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 {csn 4628 {ctp 4632 〈cop 4634 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ∘f cof 7672 ndxcnx 17133 Basecbs 17151 +gcplusg 17204 .rcmulr 17205 Scalarcsca 17207 ·𝑠 cvsca 17208 opprcoppr 20231 LFnlclfn 38393 LDualcld 38459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-sca 17220 df-vsca 17221 df-ldual 38460 |
This theorem is referenced by: ldualvadd 38465 |
Copyright terms: Public domain | W3C validator |