Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualfvadd Structured version   Visualization version   GIF version

Theorem ldualfvadd 37142
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualfvadd.q = ( ∘f + ↾ (𝐹 × 𝐹))
Assertion
Ref Expression
ldualfvadd (𝜑 = )

Proof of Theorem ldualfvadd
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 ldualvadd.a . . . 4 + = (+g𝑅)
3 ldualfvadd.q . . . 4 = ( ∘f + ↾ (𝐹 × 𝐹))
4 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
5 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
6 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
9 eqid 2738 . . . 4 (oppr𝑅) = (oppr𝑅)
10 eqid 2738 . . . 4 (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘}))) = (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))
11 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualset 37139 . . 3 (𝜑𝐷 = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
1312fveq2d 6778 . 2 (𝜑 → (+g𝐷) = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
14 ldualvadd.p . 2 = (+g𝐷)
154fvexi 6788 . . . . 5 𝐹 ∈ V
16 id 22 . . . . . 6 (𝐹 ∈ V → 𝐹 ∈ V)
1716, 16ofmresex 7828 . . . . 5 (𝐹 ∈ V → ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V)
1815, 17ax-mp 5 . . . 4 ( ∘f + ↾ (𝐹 × 𝐹)) ∈ V
193, 18eqeltri 2835 . . 3 ∈ V
20 eqid 2738 . . . 4 ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}) = ({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})
2120lmodplusg 17037 . . 3 ( ∈ V → = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩})))
2219, 21ax-mp 5 . 2 = (+g‘({⟨(Base‘ndx), 𝐹⟩, ⟨(+g‘ndx), ⟩, ⟨(Scalar‘ndx), (oppr𝑅)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘𝑅), 𝑓𝐹 ↦ (𝑓f (.r𝑅)((Base‘𝑊) × {𝑘})))⟩}))
2313, 14, 223eqtr4g 2803 1 (𝜑 = )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  {csn 4561  {ctp 4565  cop 4567   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  opprcoppr 19861  LFnlclfn 37071  LDualcld 37137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-sca 16978  df-vsca 16979  df-ldual 37138
This theorem is referenced by:  ldualvadd  37143
  Copyright terms: Public domain W3C validator