| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > leat | Structured version Visualization version GIF version | ||
| Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
| Ref | Expression |
|---|---|
| leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| leatom.l | ⊢ ≤ = (le‘𝐾) |
| leatom.z | ⊢ 0 = (0.‘𝐾) |
| leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| leat | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | leatom.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | leatom.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | leatom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | leatb 39292 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
| 6 | 5 | biimpa 476 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 0.cp0 18389 OPcops 39172 Atomscatm 39263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-proset 18262 df-poset 18281 df-plt 18296 df-glb 18313 df-p0 18391 df-oposet 39176 df-covers 39266 df-ats 39267 |
| This theorem is referenced by: leat3 39295 tendoex 40976 |
| Copyright terms: Public domain | W3C validator |