Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leat | Structured version Visualization version GIF version |
Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leat | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | leatom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | leatb 37294 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
6 | 5 | biimpa 477 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6431 Basecbs 16902 lecple 16959 0.cp0 18131 OPcops 37174 Atomscatm 37265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-proset 18003 df-poset 18021 df-plt 18038 df-glb 18055 df-p0 18133 df-oposet 37178 df-covers 37268 df-ats 37269 |
This theorem is referenced by: leat3 37297 tendoex 38977 |
Copyright terms: Public domain | W3C validator |