Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat Structured version   Visualization version   GIF version

Theorem leat 37295
Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leat (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋 = 𝑃𝑋 = 0 ))

Proof of Theorem leat
StepHypRef Expression
1 leatom.b . . 3 𝐵 = (Base‘𝐾)
2 leatom.l . . 3 = (le‘𝐾)
3 leatom.z . . 3 0 = (0.‘𝐾)
4 leatom.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4leatb 37294 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
65biimpa 477 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋 = 𝑃𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6431  Basecbs 16902  lecple 16959  0.cp0 18131  OPcops 37174  Atomscatm 37265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-proset 18003  df-poset 18021  df-plt 18038  df-glb 18055  df-p0 18133  df-oposet 37178  df-covers 37268  df-ats 37269
This theorem is referenced by:  leat3  37297  tendoex  38977
  Copyright terms: Public domain W3C validator