Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Structured version   Visualization version   GIF version

Theorem tendoex 40674
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 40673. TODO: can this be used to shorten uses of cdlemk 40673? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l = (le‘𝐾)
tendoex.h 𝐻 = (LHyp‘𝐾)
tendoex.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoex.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoex.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hints:   𝐻(𝑢)   (𝑢)

Proof of Theorem tendoex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1221 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 hlop 39060 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
31, 2syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
4 simpl1 1188 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl2r 1224 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝑁𝑇)
6 eqid 2726 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
7 tendoex.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
8 tendoex.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendoex.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
106, 7, 8, 9trlcl 39863 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ (Base‘𝐾))
114, 5, 10syl2anc 582 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
12 simpr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
13 simpl3 1190 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) (𝑅𝐹))
14 tendoex.l . . . . . . 7 = (le‘𝐾)
15 eqid 2726 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
16 eqid 2726 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
176, 14, 15, 16leat 38991 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
183, 11, 12, 13, 17syl31anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
19 simp3 1135 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝑅𝑁) (𝑅𝐹))
20 breq2 5157 . . . . . . . . 9 ((𝑅𝐹) = (0.‘𝐾) → ((𝑅𝑁) (𝑅𝐹) ↔ (𝑅𝑁) (0.‘𝐾)))
2119, 20syl5ibcom 244 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) = (0.‘𝐾) → (𝑅𝑁) (0.‘𝐾)))
2221imp 405 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) (0.‘𝐾))
23 simpl1l 1221 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ HL)
2423, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ OP)
25 simpl1 1188 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝑁𝑇)
2725, 26, 10syl2anc 582 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
286, 14, 15ople0 38885 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
2924, 27, 28syl2anc 582 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
3022, 29mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) = (0.‘𝐾))
3130olcd 872 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
32 simp1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2l 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → 𝐹𝑇)
3415, 16, 7, 8, 9trlator0 39870 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3532, 33, 34syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3618, 31, 35mpjaodan 956 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
37363expa 1115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
38 eqcom 2733 . . . . 5 ((𝑅𝑁) = (𝑅𝐹) ↔ (𝑅𝐹) = (𝑅𝑁))
39 tendoex.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
407, 8, 9, 39cdlemk 40673 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
41403expa 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
4238, 41sylan2b 592 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
43 eqid 2726 . . . . . . 7 (𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑇 ↦ ( I ↾ (Base‘𝐾)))
446, 7, 8, 39, 43tendo0cl 40489 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
4544ad2antrr 724 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
46 simplrl 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝐹𝑇)
4743, 6tendo02 40486 . . . . . . 7 (𝐹𝑇 → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
4846, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
496, 15, 7, 8, 9trlid0b 39877 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5049adantrl 714 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5150biimpar 476 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝑁 = ( I ↾ (Base‘𝐾)))
5248, 51eqtr4d 2769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁)
53 fveq1 6900 . . . . . . 7 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → (𝑢𝐹) = ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹))
5453eqeq1d 2728 . . . . . 6 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁))
5554rspcev 3608 . . . . 5 (((𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸 ∧ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5645, 52, 55syl2anc 582 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5742, 56jaodan 955 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾))) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5837, 57syldan 589 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
59583impa 1107 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5153  cmpt 5236   I cid 5579  cres 5684  cfv 6554  Basecbs 17213  lecple 17273  0.cp0 18448  OPcops 38870  Atomscatm 38961  HLchlt 39048  LHypclh 39683  LTrncltrn 39800  trLctrl 39857  TEndoctendo 40451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38651
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-undef 8288  df-map 8857  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-p1 18451  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197  df-lplanes 39198  df-lvols 39199  df-lines 39200  df-psubsp 39202  df-pmap 39203  df-padd 39495  df-lhyp 39687  df-laut 39688  df-ldil 39803  df-ltrn 39804  df-trl 39858  df-tendo 40454
This theorem is referenced by:  dva1dim  40684  dihjatcclem4  41120
  Copyright terms: Public domain W3C validator