Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Structured version   Visualization version   GIF version

Theorem tendoex 41014
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 41013. TODO: can this be used to shorten uses of cdlemk 41013? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l = (le‘𝐾)
tendoex.h 𝐻 = (LHyp‘𝐾)
tendoex.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoex.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoex.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hints:   𝐻(𝑢)   (𝑢)

Proof of Theorem tendoex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 hlop 39401 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
31, 2syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
4 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝑁𝑇)
6 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
7 tendoex.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
8 tendoex.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendoex.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
106, 7, 8, 9trlcl 40203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ (Base‘𝐾))
114, 5, 10syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
12 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
13 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) (𝑅𝐹))
14 tendoex.l . . . . . . 7 = (le‘𝐾)
15 eqid 2731 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
16 eqid 2731 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
176, 14, 15, 16leat 39332 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
183, 11, 12, 13, 17syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
19 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝑅𝑁) (𝑅𝐹))
20 breq2 5090 . . . . . . . . 9 ((𝑅𝐹) = (0.‘𝐾) → ((𝑅𝑁) (𝑅𝐹) ↔ (𝑅𝑁) (0.‘𝐾)))
2119, 20syl5ibcom 245 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) = (0.‘𝐾) → (𝑅𝑁) (0.‘𝐾)))
2221imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) (0.‘𝐾))
23 simpl1l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ HL)
2423, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ OP)
25 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝑁𝑇)
2725, 26, 10syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
286, 14, 15ople0 39226 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
2924, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
3022, 29mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) = (0.‘𝐾))
3130olcd 874 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
32 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → 𝐹𝑇)
3415, 16, 7, 8, 9trlator0 40210 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3532, 33, 34syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3618, 31, 35mpjaodan 960 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
37363expa 1118 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
38 eqcom 2738 . . . . 5 ((𝑅𝑁) = (𝑅𝐹) ↔ (𝑅𝐹) = (𝑅𝑁))
39 tendoex.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
407, 8, 9, 39cdlemk 41013 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
41403expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
4238, 41sylan2b 594 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
43 eqid 2731 . . . . . . 7 (𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑇 ↦ ( I ↾ (Base‘𝐾)))
446, 7, 8, 39, 43tendo0cl 40829 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
4544ad2antrr 726 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
46 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝐹𝑇)
4743, 6tendo02 40826 . . . . . . 7 (𝐹𝑇 → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
4846, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
496, 15, 7, 8, 9trlid0b 40217 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5049adantrl 716 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5150biimpar 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝑁 = ( I ↾ (Base‘𝐾)))
5248, 51eqtr4d 2769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁)
53 fveq1 6816 . . . . . . 7 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → (𝑢𝐹) = ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹))
5453eqeq1d 2733 . . . . . 6 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁))
5554rspcev 3572 . . . . 5 (((𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸 ∧ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5645, 52, 55syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5742, 56jaodan 959 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾))) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5837, 57syldan 591 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
59583impa 1109 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5086  cmpt 5167   I cid 5505  cres 5613  cfv 6476  Basecbs 17115  lecple 17163  0.cp0 18322  OPcops 39211  Atomscatm 39302  HLchlt 39389  LHypclh 40023  LTrncltrn 40140  trLctrl 40197  TEndoctendo 40791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-map 8747  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tendo 40794
This theorem is referenced by:  dva1dim  41024  dihjatcclem4  41460
  Copyright terms: Public domain W3C validator