Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Structured version   Visualization version   GIF version

Theorem tendoex 39438
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 39437. TODO: can this be used to shorten uses of cdlemk 39437? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l = (le‘𝐾)
tendoex.h 𝐻 = (LHyp‘𝐾)
tendoex.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoex.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoex.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hints:   𝐻(𝑢)   (𝑢)

Proof of Theorem tendoex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1224 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 hlop 37824 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
31, 2syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
4 simpl1 1191 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl2r 1227 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝑁𝑇)
6 eqid 2736 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
7 tendoex.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
8 tendoex.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendoex.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
106, 7, 8, 9trlcl 38627 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ (Base‘𝐾))
114, 5, 10syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
12 simpr 485 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
13 simpl3 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) (𝑅𝐹))
14 tendoex.l . . . . . . 7 = (le‘𝐾)
15 eqid 2736 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
16 eqid 2736 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
176, 14, 15, 16leat 37755 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
183, 11, 12, 13, 17syl31anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
19 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝑅𝑁) (𝑅𝐹))
20 breq2 5109 . . . . . . . . 9 ((𝑅𝐹) = (0.‘𝐾) → ((𝑅𝑁) (𝑅𝐹) ↔ (𝑅𝑁) (0.‘𝐾)))
2119, 20syl5ibcom 244 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) = (0.‘𝐾) → (𝑅𝑁) (0.‘𝐾)))
2221imp 407 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) (0.‘𝐾))
23 simpl1l 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ HL)
2423, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ OP)
25 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝑁𝑇)
2725, 26, 10syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
286, 14, 15ople0 37649 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
2924, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
3022, 29mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) = (0.‘𝐾))
3130olcd 872 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
32 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → 𝐹𝑇)
3415, 16, 7, 8, 9trlator0 38634 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3532, 33, 34syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3618, 31, 35mpjaodan 957 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
37363expa 1118 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
38 eqcom 2743 . . . . 5 ((𝑅𝑁) = (𝑅𝐹) ↔ (𝑅𝐹) = (𝑅𝑁))
39 tendoex.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
407, 8, 9, 39cdlemk 39437 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
41403expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
4238, 41sylan2b 594 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
43 eqid 2736 . . . . . . 7 (𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑇 ↦ ( I ↾ (Base‘𝐾)))
446, 7, 8, 39, 43tendo0cl 39253 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
4544ad2antrr 724 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
46 simplrl 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝐹𝑇)
4743, 6tendo02 39250 . . . . . . 7 (𝐹𝑇 → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
4846, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
496, 15, 7, 8, 9trlid0b 38641 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5049adantrl 714 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5150biimpar 478 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝑁 = ( I ↾ (Base‘𝐾)))
5248, 51eqtr4d 2779 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁)
53 fveq1 6841 . . . . . . 7 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → (𝑢𝐹) = ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹))
5453eqeq1d 2738 . . . . . 6 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁))
5554rspcev 3581 . . . . 5 (((𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸 ∧ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5645, 52, 55syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5742, 56jaodan 956 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾))) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5837, 57syldan 591 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
59583impa 1110 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cmpt 5188   I cid 5530  cres 5635  cfv 6496  Basecbs 17083  lecple 17140  0.cp0 18312  OPcops 37634  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621  TEndoctendo 39215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-undef 8204  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218
This theorem is referenced by:  dva1dim  39448  dihjatcclem4  39884
  Copyright terms: Public domain W3C validator