Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Structured version   Visualization version   GIF version

Theorem tendoex 40994
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 40993. TODO: can this be used to shorten uses of cdlemk 40993? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l = (le‘𝐾)
tendoex.h 𝐻 = (LHyp‘𝐾)
tendoex.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoex.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoex.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hints:   𝐻(𝑢)   (𝑢)

Proof of Theorem tendoex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 hlop 39380 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
31, 2syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
4 simpl1 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝑁𝑇)
6 eqid 2735 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
7 tendoex.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
8 tendoex.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendoex.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
106, 7, 8, 9trlcl 40183 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ (Base‘𝐾))
114, 5, 10syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
12 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
13 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) (𝑅𝐹))
14 tendoex.l . . . . . . 7 = (le‘𝐾)
15 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
16 eqid 2735 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
176, 14, 15, 16leat 39311 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
183, 11, 12, 13, 17syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
19 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝑅𝑁) (𝑅𝐹))
20 breq2 5123 . . . . . . . . 9 ((𝑅𝐹) = (0.‘𝐾) → ((𝑅𝑁) (𝑅𝐹) ↔ (𝑅𝑁) (0.‘𝐾)))
2119, 20syl5ibcom 245 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) = (0.‘𝐾) → (𝑅𝑁) (0.‘𝐾)))
2221imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) (0.‘𝐾))
23 simpl1l 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ HL)
2423, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ OP)
25 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝑁𝑇)
2725, 26, 10syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
286, 14, 15ople0 39205 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
2924, 27, 28syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
3022, 29mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) = (0.‘𝐾))
3130olcd 874 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
32 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → 𝐹𝑇)
3415, 16, 7, 8, 9trlator0 40190 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3532, 33, 34syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3618, 31, 35mpjaodan 960 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
37363expa 1118 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
38 eqcom 2742 . . . . 5 ((𝑅𝑁) = (𝑅𝐹) ↔ (𝑅𝐹) = (𝑅𝑁))
39 tendoex.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
407, 8, 9, 39cdlemk 40993 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
41403expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
4238, 41sylan2b 594 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
43 eqid 2735 . . . . . . 7 (𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑇 ↦ ( I ↾ (Base‘𝐾)))
446, 7, 8, 39, 43tendo0cl 40809 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
4544ad2antrr 726 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
46 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝐹𝑇)
4743, 6tendo02 40806 . . . . . . 7 (𝐹𝑇 → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
4846, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
496, 15, 7, 8, 9trlid0b 40197 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5049adantrl 716 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5150biimpar 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝑁 = ( I ↾ (Base‘𝐾)))
5248, 51eqtr4d 2773 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁)
53 fveq1 6875 . . . . . . 7 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → (𝑢𝐹) = ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹))
5453eqeq1d 2737 . . . . . 6 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁))
5554rspcev 3601 . . . . 5 (((𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸 ∧ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5645, 52, 55syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5742, 56jaodan 959 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾))) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5837, 57syldan 591 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
59583impa 1109 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cmpt 5201   I cid 5547  cres 5656  cfv 6531  Basecbs 17228  lecple 17278  0.cp0 18433  OPcops 39190  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  trLctrl 40177  TEndoctendo 40771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tendo 40774
This theorem is referenced by:  dva1dim  41004  dihjatcclem4  41440
  Copyright terms: Public domain W3C validator