Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Structured version   Visualization version   GIF version

Theorem tendoex 38916
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 38915. TODO: can this be used to shorten uses of cdlemk 38915? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l = (le‘𝐾)
tendoex.h 𝐻 = (LHyp‘𝐾)
tendoex.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoex.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoex.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoex (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hints:   𝐻(𝑢)   (𝑢)

Proof of Theorem tendoex
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
2 hlop 37303 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
31, 2syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
4 simpl1 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simpl2r 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → 𝑁𝑇)
6 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
7 tendoex.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
8 tendoex.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 tendoex.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
106, 7, 8, 9trlcl 38105 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑅𝑁) ∈ (Base‘𝐾))
114, 5, 10syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
12 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝐹) ∈ (Atoms‘𝐾))
13 simpl3 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → (𝑅𝑁) (𝑅𝐹))
14 tendoex.l . . . . . . 7 = (le‘𝐾)
15 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
16 eqid 2738 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
176, 14, 15, 16leat 37234 . . . . . 6 (((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
183, 11, 12, 13, 17syl31anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) ∈ (Atoms‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
19 simp3 1136 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝑅𝑁) (𝑅𝐹))
20 breq2 5074 . . . . . . . . 9 ((𝑅𝐹) = (0.‘𝐾) → ((𝑅𝑁) (𝑅𝐹) ↔ (𝑅𝑁) (0.‘𝐾)))
2119, 20syl5ibcom 244 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) = (0.‘𝐾) → (𝑅𝑁) (0.‘𝐾)))
2221imp 406 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) (0.‘𝐾))
23 simpl1l 1222 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ HL)
2423, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝐾 ∈ OP)
25 simpl1 1189 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → 𝑁𝑇)
2725, 26, 10syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) ∈ (Base‘𝐾))
286, 14, 15ople0 37128 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝑁) ∈ (Base‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
2924, 27, 28syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) (0.‘𝐾) ↔ (𝑅𝑁) = (0.‘𝐾)))
3022, 29mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → (𝑅𝑁) = (0.‘𝐾))
3130olcd 870 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) ∧ (𝑅𝐹) = (0.‘𝐾)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
32 simp1 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
33 simp2l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → 𝐹𝑇)
3415, 16, 7, 8, 9trlator0 38112 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3532, 33, 34syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝐹) ∈ (Atoms‘𝐾) ∨ (𝑅𝐹) = (0.‘𝐾)))
3618, 31, 35mpjaodan 955 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
37363expa 1116 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾)))
38 eqcom 2745 . . . . 5 ((𝑅𝑁) = (𝑅𝐹) ↔ (𝑅𝐹) = (𝑅𝑁))
39 tendoex.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
407, 8, 9, 39cdlemk 38915 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
41403expa 1116 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
4238, 41sylan2b 593 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
43 eqid 2738 . . . . . . 7 (𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑇 ↦ ( I ↾ (Base‘𝐾)))
446, 7, 8, 39, 43tendo0cl 38731 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
4544ad2antrr 722 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → (𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸)
46 simplrl 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝐹𝑇)
4743, 6tendo02 38728 . . . . . . 7 (𝐹𝑇 → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
4846, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = ( I ↾ (Base‘𝐾)))
496, 15, 7, 8, 9trlid0b 38119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5049adantrl 712 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) → (𝑁 = ( I ↾ (Base‘𝐾)) ↔ (𝑅𝑁) = (0.‘𝐾)))
5150biimpar 477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → 𝑁 = ( I ↾ (Base‘𝐾)))
5248, 51eqtr4d 2781 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁)
53 fveq1 6755 . . . . . . 7 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → (𝑢𝐹) = ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹))
5453eqeq1d 2740 . . . . . 6 (𝑢 = (𝑇 ↦ ( I ↾ (Base‘𝐾))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁))
5554rspcev 3552 . . . . 5 (((𝑇 ↦ ( I ↾ (Base‘𝐾))) ∈ 𝐸 ∧ ((𝑇 ↦ ( I ↾ (Base‘𝐾)))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5645, 52, 55syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) = (0.‘𝐾)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5742, 56jaodan 954 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ ((𝑅𝑁) = (𝑅𝐹) ∨ (𝑅𝑁) = (0.‘𝐾))) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
5837, 57syldan 590 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇)) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
59583impa 1108 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cmpt 5153   I cid 5479  cres 5582  cfv 6418  Basecbs 16840  lecple 16895  0.cp0 18056  OPcops 37113  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696
This theorem is referenced by:  dva1dim  38926  dihjatcclem4  39362
  Copyright terms: Public domain W3C validator