| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi1 | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvsdi1.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsdi1.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsdi1.k | ⊢ 𝐾 = (Base‘𝑅) |
| ldualvsdi1.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsdi1.p | ⊢ + = (+g‘𝐷) |
| ldualvsdi1.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsdi1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsdi1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| ldualvsdi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvsdi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsdi1 | ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvsdi1.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ldualvsdi1.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 4 | ldualvsdi1.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | ldualvsdi1.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 7 | ldualvsdi1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 8 | ldualvsdi1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 9 | ldualvsdi1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 10 | ldualvsdi1.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ldualvs 39116 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 12 | ldualvsdi1.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 | ldualvs 39116 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐻) = (𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 14 | 11, 13 | oveq12d 7367 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐺) ∘f (+g‘𝑅)(𝑋 · 𝐻)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 15 | eqid 2729 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 16 | ldualvsdi1.p | . . 3 ⊢ + = (+g‘𝐷) | |
| 17 | 1, 3, 4, 6, 7, 8, 9, 10 | ldualvscl 39118 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
| 18 | 1, 3, 4, 6, 7, 8, 9, 12 | ldualvscl 39118 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐻) ∈ 𝐹) |
| 19 | 1, 3, 15, 6, 16, 8, 17, 18 | ldualvadd 39108 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐺) + (𝑋 · 𝐻)) = ((𝑋 · 𝐺) ∘f (+g‘𝑅)(𝑋 · 𝐻))) |
| 20 | 1, 6, 16, 8, 10, 12 | ldualvaddcl 39109 | . . . 4 ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 20 | ldualvs 39116 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 + 𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 22 | 1, 3, 15, 6, 16, 8, 10, 12 | ldualvadd 39108 | . . . 4 ⊢ (𝜑 → (𝐺 + 𝐻) = (𝐺 ∘f (+g‘𝑅)𝐻)) |
| 23 | 22 | oveq1d 7364 | . . 3 ⊢ (𝜑 → ((𝐺 + 𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺 ∘f (+g‘𝑅)𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 24 | 2, 3, 4, 15, 5, 1, 8, 9, 10, 12 | lflvsdi1 39057 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f (+g‘𝑅)𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 25 | 21, 23, 24 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 26 | 14, 19, 25 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 × cxp 5617 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 LModclmod 20763 LFnlclfn 39036 LDualcld 39102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-sca 17177 df-vsca 17178 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-lfl 39037 df-ldual 39103 |
| This theorem is referenced by: lduallmodlem 39131 |
| Copyright terms: Public domain | W3C validator |