Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi1 Structured version   Visualization version   GIF version

Theorem ldualvsdi1 39166
Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi1.f 𝐹 = (LFnl‘𝑊)
ldualvsdi1.r 𝑅 = (Scalar‘𝑊)
ldualvsdi1.k 𝐾 = (Base‘𝑅)
ldualvsdi1.d 𝐷 = (LDual‘𝑊)
ldualvsdi1.p + = (+g𝐷)
ldualvsdi1.s · = ( ·𝑠𝐷)
ldualvsdi1.w (𝜑𝑊 ∈ LMod)
ldualvsdi1.x (𝜑𝑋𝐾)
ldualvsdi1.g (𝜑𝐺𝐹)
ldualvsdi1.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsdi1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))

Proof of Theorem ldualvsdi1
StepHypRef Expression
1 ldualvsdi1.f . . . 4 𝐹 = (LFnl‘𝑊)
2 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi1.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualvsdi1.k . . . 4 𝐾 = (Base‘𝑅)
5 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
6 ldualvsdi1.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualvsdi1.s . . . 4 · = ( ·𝑠𝐷)
8 ldualvsdi1.w . . . 4 (𝜑𝑊 ∈ LMod)
9 ldualvsdi1.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi1.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 39160 . . 3 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
12 ldualvsdi1.h . . . 4 (𝜑𝐻𝐹)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12ldualvs 39160 . . 3 (𝜑 → (𝑋 · 𝐻) = (𝐻f (.r𝑅)((Base‘𝑊) × {𝑋})))
1411, 13oveq12d 7428 . 2 (𝜑 → ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
15 eqid 2736 . . 3 (+g𝑅) = (+g𝑅)
16 ldualvsdi1.p . . 3 + = (+g𝐷)
171, 3, 4, 6, 7, 8, 9, 10ldualvscl 39162 . . 3 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
181, 3, 4, 6, 7, 8, 9, 12ldualvscl 39162 . . 3 (𝜑 → (𝑋 · 𝐻) ∈ 𝐹)
191, 3, 15, 6, 16, 8, 17, 18ldualvadd 39152 . 2 (𝜑 → ((𝑋 · 𝐺) + (𝑋 · 𝐻)) = ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)))
201, 6, 16, 8, 10, 12ldualvaddcl 39153 . . . 4 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
211, 2, 3, 4, 5, 6, 7, 8, 9, 20ldualvs 39160 . . 3 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 3, 15, 6, 16, 8, 10, 12ldualvadd 39152 . . . 4 (𝜑 → (𝐺 + 𝐻) = (𝐺f (+g𝑅)𝐻))
2322oveq1d 7425 . . 3 (𝜑 → ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
242, 3, 4, 15, 5, 1, 8, 9, 10, 12lflvsdi1 39101 . . 3 (𝜑 → ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2521, 23, 243eqtrd 2775 . 2 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2614, 19, 253eqtr4rd 2782 1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4606   × cxp 5657  cfv 6536  (class class class)co 7410  f cof 7674  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  LModclmod 20822  LFnlclfn 39080  LDualcld 39146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lfl 39081  df-ldual 39147
This theorem is referenced by:  lduallmodlem  39175
  Copyright terms: Public domain W3C validator