Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi1 Structured version   Visualization version   GIF version

Theorem ldualvsdi1 39144
Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi1.f 𝐹 = (LFnl‘𝑊)
ldualvsdi1.r 𝑅 = (Scalar‘𝑊)
ldualvsdi1.k 𝐾 = (Base‘𝑅)
ldualvsdi1.d 𝐷 = (LDual‘𝑊)
ldualvsdi1.p + = (+g𝐷)
ldualvsdi1.s · = ( ·𝑠𝐷)
ldualvsdi1.w (𝜑𝑊 ∈ LMod)
ldualvsdi1.x (𝜑𝑋𝐾)
ldualvsdi1.g (𝜑𝐺𝐹)
ldualvsdi1.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsdi1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))

Proof of Theorem ldualvsdi1
StepHypRef Expression
1 ldualvsdi1.f . . . 4 𝐹 = (LFnl‘𝑊)
2 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi1.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualvsdi1.k . . . 4 𝐾 = (Base‘𝑅)
5 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
6 ldualvsdi1.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualvsdi1.s . . . 4 · = ( ·𝑠𝐷)
8 ldualvsdi1.w . . . 4 (𝜑𝑊 ∈ LMod)
9 ldualvsdi1.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi1.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 39138 . . 3 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
12 ldualvsdi1.h . . . 4 (𝜑𝐻𝐹)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12ldualvs 39138 . . 3 (𝜑 → (𝑋 · 𝐻) = (𝐻f (.r𝑅)((Base‘𝑊) × {𝑋})))
1411, 13oveq12d 7449 . 2 (𝜑 → ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
15 eqid 2737 . . 3 (+g𝑅) = (+g𝑅)
16 ldualvsdi1.p . . 3 + = (+g𝐷)
171, 3, 4, 6, 7, 8, 9, 10ldualvscl 39140 . . 3 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
181, 3, 4, 6, 7, 8, 9, 12ldualvscl 39140 . . 3 (𝜑 → (𝑋 · 𝐻) ∈ 𝐹)
191, 3, 15, 6, 16, 8, 17, 18ldualvadd 39130 . 2 (𝜑 → ((𝑋 · 𝐺) + (𝑋 · 𝐻)) = ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)))
201, 6, 16, 8, 10, 12ldualvaddcl 39131 . . . 4 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
211, 2, 3, 4, 5, 6, 7, 8, 9, 20ldualvs 39138 . . 3 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 3, 15, 6, 16, 8, 10, 12ldualvadd 39130 . . . 4 (𝜑 → (𝐺 + 𝐻) = (𝐺f (+g𝑅)𝐻))
2322oveq1d 7446 . . 3 (𝜑 → ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
242, 3, 4, 15, 5, 1, 8, 9, 10, 12lflvsdi1 39079 . . 3 (𝜑 → ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2521, 23, 243eqtrd 2781 . 2 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2614, 19, 253eqtr4rd 2788 1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4626   × cxp 5683  cfv 6561  (class class class)co 7431  f cof 7695  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  LModclmod 20858  LFnlclfn 39058  LDualcld 39124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-sca 17313  df-vsca 17314  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lfl 39059  df-ldual 39125
This theorem is referenced by:  lduallmodlem  39153
  Copyright terms: Public domain W3C validator