Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi1 Structured version   Visualization version   GIF version

Theorem ldualvsdi1 39109
Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi1.f 𝐹 = (LFnl‘𝑊)
ldualvsdi1.r 𝑅 = (Scalar‘𝑊)
ldualvsdi1.k 𝐾 = (Base‘𝑅)
ldualvsdi1.d 𝐷 = (LDual‘𝑊)
ldualvsdi1.p + = (+g𝐷)
ldualvsdi1.s · = ( ·𝑠𝐷)
ldualvsdi1.w (𝜑𝑊 ∈ LMod)
ldualvsdi1.x (𝜑𝑋𝐾)
ldualvsdi1.g (𝜑𝐺𝐹)
ldualvsdi1.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsdi1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))

Proof of Theorem ldualvsdi1
StepHypRef Expression
1 ldualvsdi1.f . . . 4 𝐹 = (LFnl‘𝑊)
2 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi1.r . . . 4 𝑅 = (Scalar‘𝑊)
4 ldualvsdi1.k . . . 4 𝐾 = (Base‘𝑅)
5 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
6 ldualvsdi1.d . . . 4 𝐷 = (LDual‘𝑊)
7 ldualvsdi1.s . . . 4 · = ( ·𝑠𝐷)
8 ldualvsdi1.w . . . 4 (𝜑𝑊 ∈ LMod)
9 ldualvsdi1.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi1.g . . . 4 (𝜑𝐺𝐹)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ldualvs 39103 . . 3 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
12 ldualvsdi1.h . . . 4 (𝜑𝐻𝐹)
131, 2, 3, 4, 5, 6, 7, 8, 9, 12ldualvs 39103 . . 3 (𝜑 → (𝑋 · 𝐻) = (𝐻f (.r𝑅)((Base‘𝑊) × {𝑋})))
1411, 13oveq12d 7387 . 2 (𝜑 → ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
15 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
16 ldualvsdi1.p . . 3 + = (+g𝐷)
171, 3, 4, 6, 7, 8, 9, 10ldualvscl 39105 . . 3 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
181, 3, 4, 6, 7, 8, 9, 12ldualvscl 39105 . . 3 (𝜑 → (𝑋 · 𝐻) ∈ 𝐹)
191, 3, 15, 6, 16, 8, 17, 18ldualvadd 39095 . 2 (𝜑 → ((𝑋 · 𝐺) + (𝑋 · 𝐻)) = ((𝑋 · 𝐺) ∘f (+g𝑅)(𝑋 · 𝐻)))
201, 6, 16, 8, 10, 12ldualvaddcl 39096 . . . 4 (𝜑 → (𝐺 + 𝐻) ∈ 𝐹)
211, 2, 3, 4, 5, 6, 7, 8, 9, 20ldualvs 39103 . . 3 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 3, 15, 6, 16, 8, 10, 12ldualvadd 39095 . . . 4 (𝜑 → (𝐺 + 𝐻) = (𝐺f (+g𝑅)𝐻))
2322oveq1d 7384 . . 3 (𝜑 → ((𝐺 + 𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})))
242, 3, 4, 15, 5, 1, 8, 9, 10, 12lflvsdi1 39044 . . 3 (𝜑 → ((𝐺f (+g𝑅)𝐻) ∘f (.r𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2521, 23, 243eqtrd 2768 . 2 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g𝑅)(𝐻f (.r𝑅)((Base‘𝑊) × {𝑋}))))
2614, 19, 253eqtr4rd 2775 1 (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585   × cxp 5629  cfv 6499  (class class class)co 7369  f cof 7631  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  LModclmod 20742  LFnlclfn 39023  LDualcld 39089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-sca 17212  df-vsca 17213  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-lfl 39024  df-ldual 39090
This theorem is referenced by:  lduallmodlem  39118
  Copyright terms: Public domain W3C validator