| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsdi1 | Structured version Visualization version GIF version | ||
| Description: Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvsdi1.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsdi1.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsdi1.k | ⊢ 𝐾 = (Base‘𝑅) |
| ldualvsdi1.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsdi1.p | ⊢ + = (+g‘𝐷) |
| ldualvsdi1.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsdi1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsdi1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| ldualvsdi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvsdi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsdi1 | ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvsdi1.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ldualvsdi1.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 4 | ldualvsdi1.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | ldualvsdi1.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 7 | ldualvsdi1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 8 | ldualvsdi1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 9 | ldualvsdi1.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 10 | ldualvsdi1.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ldualvs 39184 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐺) = (𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 12 | ldualvsdi1.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 | ldualvs 39184 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐻) = (𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 14 | 11, 13 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐺) ∘f (+g‘𝑅)(𝑋 · 𝐻)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 15 | eqid 2731 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 16 | ldualvsdi1.p | . . 3 ⊢ + = (+g‘𝐷) | |
| 17 | 1, 3, 4, 6, 7, 8, 9, 10 | ldualvscl 39186 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) |
| 18 | 1, 3, 4, 6, 7, 8, 9, 12 | ldualvscl 39186 | . . 3 ⊢ (𝜑 → (𝑋 · 𝐻) ∈ 𝐹) |
| 19 | 1, 3, 15, 6, 16, 8, 17, 18 | ldualvadd 39176 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐺) + (𝑋 · 𝐻)) = ((𝑋 · 𝐺) ∘f (+g‘𝑅)(𝑋 · 𝐻))) |
| 20 | 1, 6, 16, 8, 10, 12 | ldualvaddcl 39177 | . . . 4 ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 20 | ldualvs 39184 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 + 𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 22 | 1, 3, 15, 6, 16, 8, 10, 12 | ldualvadd 39176 | . . . 4 ⊢ (𝜑 → (𝐺 + 𝐻) = (𝐺 ∘f (+g‘𝑅)𝐻)) |
| 23 | 22 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((𝐺 + 𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺 ∘f (+g‘𝑅)𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋}))) |
| 24 | 2, 3, 4, 15, 5, 1, 8, 9, 10, 12 | lflvsdi1 39125 | . . 3 ⊢ (𝜑 → ((𝐺 ∘f (+g‘𝑅)𝐻) ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 25 | 21, 23, 24 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝐺 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})) ∘f (+g‘𝑅)(𝐻 ∘f (.r‘𝑅)((Base‘𝑊) × {𝑋})))) |
| 26 | 14, 19, 25 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 LModclmod 20793 LFnlclfn 39104 LDualcld 39170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-sca 17177 df-vsca 17178 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lfl 39105 df-ldual 39171 |
| This theorem is referenced by: lduallmodlem 39199 |
| Copyright terms: Public domain | W3C validator |