Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvald Structured version   Visualization version   GIF version

Theorem limsupvald 45750
Description: The superior limit of a sequence 𝐹 of extended real numbers is the infimum of the set of suprema of all restrictions of 𝐹 to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupvald.1 (𝜑𝐹𝑉)
limsupvald.2 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupvald (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Distinct variable group:   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem limsupvald
StepHypRef Expression
1 limsupvald.1 . 2 (𝜑𝐹𝑉)
2 limsupvald.2 . . 3 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 15368 . 2 (𝐹𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
41, 3syl 17 1 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3898  cmpt 5169  ran crn 5614  cima 5616  cfv 6476  (class class class)co 7340  supcsup 9318  infcinf 9319  cr 10996  +∞cpnf 11134  *cxr 11136   < clt 11137  [,)cico 13238  lim supclsp 15364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-pre-lttri 11071  ax-pre-lttrn 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-po 5521  df-so 5522  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-er 8616  df-en 8864  df-dom 8865  df-sdom 8866  df-sup 9320  df-inf 9321  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-limsup 15365
This theorem is referenced by:  liminflelimsuplem  45770
  Copyright terms: Public domain W3C validator