| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvald | Structured version Visualization version GIF version | ||
| Description: The superior limit of a sequence 𝐹 of extended real numbers is the infimum of the set of suprema of all restrictions of 𝐹 to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupvald.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| limsupvald.2 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Ref | Expression |
|---|---|
| limsupvald | ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupvald.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | limsupvald.2 | . . 3 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 3 | 2 | limsupval 15368 | . 2 ⊢ (𝐹 ∈ 𝑉 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3898 ↦ cmpt 5169 ran crn 5614 “ cima 5616 ‘cfv 6476 (class class class)co 7340 supcsup 9318 infcinf 9319 ℝcr 10996 +∞cpnf 11134 ℝ*cxr 11136 < clt 11137 [,)cico 13238 lim supclsp 15364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-pre-lttri 11071 ax-pre-lttrn 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-po 5521 df-so 5522 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8616 df-en 8864 df-dom 8865 df-sdom 8866 df-sup 9320 df-inf 9321 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-limsup 15365 |
| This theorem is referenced by: liminflelimsuplem 45770 |
| Copyright terms: Public domain | W3C validator |