MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf Structured version   Visualization version   GIF version

Theorem lmhmf 20878
Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmf.b 𝐵 = (Base‘𝑆)
lmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lmhmf (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem lmhmf
StepHypRef Expression
1 lmghm 20875 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmf.b . . 3 𝐵 = (Base‘𝑆)
3 lmhmf.c . . 3 𝐶 = (Base‘𝑇)
42, 3ghmf 19141 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵𝐶)
51, 4syl 17 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wf 6530  cfv 6534  (class class class)co 7402  Basecbs 17149   GrpHom cghm 19134   LMHom clmhm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-ghm 19135  df-lmhm 20866
This theorem is referenced by:  islmhm2  20882  lmhmco  20887  lmhmplusg  20888  lmhmvsca  20889  lmhmf1o  20890  lmhmima  20891  lmhmpreima  20892  lmhmlsp  20893  lmhmrnlss  20894  lmhmeql  20899  lspextmo  20900  lmimcnv  20911  ipcl  21515  frlmup3  21684  nmoleub2lem  24985  nmoleub2lem3  24986  nmoleub3  24990  nmhmcn  24991  dimkerim  33219  kercvrlsm  42375  lmhmfgima  42376  lnmepi  42377  lmhmfgsplit  42378  pwssplit4  42381  mendring  42484  mendlmod  42485  mendassa  42486
  Copyright terms: Public domain W3C validator