| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmf | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| lmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmf | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmghm 20963 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 2 | lmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | lmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | 2, 3 | ghmf 19130 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 GrpHom cghm 19122 LMHom clmhm 20951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ghm 19123 df-lmhm 20954 |
| This theorem is referenced by: islmhm2 20970 lmhmco 20975 lmhmplusg 20976 lmhmvsca 20977 lmhmf1o 20978 lmhmima 20979 lmhmpreima 20980 lmhmlsp 20981 lmhmrnlss 20982 lmhmeql 20987 lspextmo 20988 lmimcnv 20999 ipcl 21568 frlmup3 21735 nmoleub2lem 25039 nmoleub2lem3 25040 nmoleub3 25044 nmhmcn 25045 dimkerim 33635 lvecendof1f1o 33641 kercvrlsm 43115 lmhmfgima 43116 lnmepi 43117 lmhmfgsplit 43118 pwssplit4 43121 mendring 43220 mendlmod 43221 mendassa 43222 |
| Copyright terms: Public domain | W3C validator |