MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf Structured version   Visualization version   GIF version

Theorem lmhmf 20637
Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmf.b 𝐵 = (Base‘𝑆)
lmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lmhmf (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem lmhmf
StepHypRef Expression
1 lmghm 20634 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmf.b . . 3 𝐵 = (Base‘𝑆)
3 lmhmf.c . . 3 𝐶 = (Base‘𝑇)
42, 3ghmf 19090 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵𝐶)
51, 4syl 17 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wf 6536  cfv 6540  (class class class)co 7405  Basecbs 17140   GrpHom cghm 19083   LMHom clmhm 20622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ghm 19084  df-lmhm 20625
This theorem is referenced by:  islmhm2  20641  lmhmco  20646  lmhmplusg  20647  lmhmvsca  20648  lmhmf1o  20649  lmhmima  20650  lmhmpreima  20651  lmhmlsp  20652  lmhmrnlss  20653  lmhmeql  20658  lspextmo  20659  lmimcnv  20670  ipcl  21177  frlmup3  21346  nmoleub2lem  24621  nmoleub2lem3  24622  nmoleub3  24626  nmhmcn  24627  dimkerim  32700  kercvrlsm  41810  lmhmfgima  41811  lnmepi  41812  lmhmfgsplit  41813  pwssplit4  41816  mendring  41919  mendlmod  41920  mendassa  41921
  Copyright terms: Public domain W3C validator