Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmhmf | Structured version Visualization version GIF version |
Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
lmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
Ref | Expression |
---|---|
lmhmf | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmghm 20399 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
2 | lmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | lmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
4 | 2, 3 | ghmf 18935 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶𝐶) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 GrpHom cghm 18928 LMHom clmhm 20387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-ghm 18929 df-lmhm 20390 |
This theorem is referenced by: islmhm2 20406 lmhmco 20411 lmhmplusg 20412 lmhmvsca 20413 lmhmf1o 20414 lmhmima 20415 lmhmpreima 20416 lmhmlsp 20417 lmhmrnlss 20418 lmhmeql 20423 lspextmo 20424 lmimcnv 20435 ipcl 20944 frlmup3 21113 nmoleub2lem 24383 nmoleub2lem3 24384 nmoleub3 24388 nmhmcn 24389 dimkerim 32004 kercvrlsm 41220 lmhmfgima 41221 lnmepi 41222 lmhmfgsplit 41223 pwssplit4 41226 mendring 41329 mendlmod 41330 mendassa 41331 |
Copyright terms: Public domain | W3C validator |