| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmf | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmf.b | ⊢ 𝐵 = (Base‘𝑆) |
| lmhmf.c | ⊢ 𝐶 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmf | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmghm 20967 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 2 | lmhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | lmhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | 2, 3 | ghmf 19134 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 GrpHom cghm 19126 LMHom clmhm 20955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ghm 19127 df-lmhm 20958 |
| This theorem is referenced by: islmhm2 20974 lmhmco 20979 lmhmplusg 20980 lmhmvsca 20981 lmhmf1o 20982 lmhmima 20983 lmhmpreima 20984 lmhmlsp 20985 lmhmrnlss 20986 lmhmeql 20991 lspextmo 20992 lmimcnv 21003 ipcl 21572 frlmup3 21739 nmoleub2lem 25042 nmoleub2lem3 25043 nmoleub3 25047 nmhmcn 25048 dimkerim 33661 lvecendof1f1o 33667 kercvrlsm 43200 lmhmfgima 43201 lnmepi 43202 lmhmfgsplit 43203 pwssplit4 43206 mendring 43305 mendlmod 43306 mendassa 43307 |
| Copyright terms: Public domain | W3C validator |