MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmf Structured version   Visualization version   GIF version

Theorem lmhmf 20970
Description: A homomorphism of left modules is a function. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmf.b 𝐵 = (Base‘𝑆)
lmhmf.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lmhmf (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)

Proof of Theorem lmhmf
StepHypRef Expression
1 lmghm 20967 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmhmf.b . . 3 𝐵 = (Base‘𝑆)
3 lmhmf.c . . 3 𝐶 = (Base‘𝑇)
42, 3ghmf 19134 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵𝐶)
51, 4syl 17 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122   GrpHom cghm 19126   LMHom clmhm 20955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ghm 19127  df-lmhm 20958
This theorem is referenced by:  islmhm2  20974  lmhmco  20979  lmhmplusg  20980  lmhmvsca  20981  lmhmf1o  20982  lmhmima  20983  lmhmpreima  20984  lmhmlsp  20985  lmhmrnlss  20986  lmhmeql  20991  lspextmo  20992  lmimcnv  21003  ipcl  21572  frlmup3  21739  nmoleub2lem  25042  nmoleub2lem3  25043  nmoleub3  25047  nmhmcn  25048  dimkerim  33661  lvecendof1f1o  33667  kercvrlsm  43200  lmhmfgima  43201  lnmepi  43202  lmhmfgsplit  43203  pwssplit4  43206  mendring  43305  mendlmod  43306  mendassa  43307
  Copyright terms: Public domain W3C validator