Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3eN Structured version   Visualization version   GIF version

Theorem hdmaprnlem3eN 41815
Description: Lemma for hdmaprnN 41821. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem3e.p + = (+g𝑈)
Assertion
Ref Expression
hdmaprnlem3eN (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Distinct variable groups:   𝑡,   𝑡,𝐿   𝑡,𝑀   𝑡,𝑁   𝑡, 0   𝑡, +   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉   𝜑,𝑡   𝑡,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑠)   𝐶(𝑣,𝑢,𝑡,𝑠)   𝐷(𝑣,𝑢,𝑡,𝑠)   + (𝑣,𝑢,𝑠)   (𝑣,𝑢,𝑠)   𝑄(𝑣,𝑢,𝑡,𝑠)   𝑆(𝑣,𝑢,𝑠)   𝑈(𝑣,𝑢,𝑠)   𝐻(𝑣,𝑢,𝑡,𝑠)   𝐾(𝑣,𝑢,𝑡,𝑠)   𝐿(𝑣,𝑢,𝑠)   𝑀(𝑣,𝑢,𝑠)   𝑁(𝑣,𝑢,𝑠)   𝑉(𝑣,𝑢,𝑠)   𝑊(𝑣,𝑢,𝑡,𝑠)   0 (𝑣,𝑢,𝑠)

Proof of Theorem hdmaprnlem3eN
StepHypRef Expression
1 hdmaprnlem1.v . . 3 𝑉 = (Base‘𝑈)
2 hdmaprnlem3e.p . . 3 + = (+g𝑈)
3 hdmaprnlem1.o . . 3 0 = (0g𝑈)
4 hdmaprnlem1.n . . 3 𝑁 = (LSpan‘𝑈)
5 eqid 2740 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
6 hdmaprnlem1.h . . . 4 𝐻 = (LHyp‘𝐾)
7 hdmaprnlem1.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8dvhlvec 41066 . . 3 (𝜑𝑈 ∈ LVec)
10 hdmaprnlem1.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
11 hdmaprnlem1.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
12 eqid 2740 . . . 4 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
13 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
14 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
15 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
166, 11, 8lcdlmod 41549 . . . . 5 (𝜑𝐶 ∈ LMod)
17 hdmaprnlem1.s . . . . . . . 8 𝑆 = ((HDMap‘𝐾)‘𝑊)
18 hdmaprnlem1.ue . . . . . . . 8 (𝜑𝑢𝑉)
196, 7, 1, 11, 13, 17, 8, 18hdmapcl 41787 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ 𝐷)
20 hdmaprnlem1.se . . . . . . . 8 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
2120eldifad 3988 . . . . . . 7 (𝜑𝑠𝐷)
22 hdmaprnlem1.a . . . . . . . 8 = (+g𝐶)
2313, 22lmodvacl 20895 . . . . . . 7 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
2416, 19, 21, 23syl3anc 1371 . . . . . 6 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
25 hdmaprnlem1.ve . . . . . . . 8 (𝜑𝑣𝑉)
26 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
27 hdmaprnlem1.un . . . . . . . 8 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
286, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27hdmaprnlem1N 41806 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
2913, 22, 15, 14, 16, 19, 21, 28lmodindp1 21035 . . . . . 6 (𝜑 → ((𝑆𝑢) 𝑠) ≠ 𝑄)
30 eldifsn 4811 . . . . . 6 (((𝑆𝑢) 𝑠) ∈ (𝐷 ∖ {𝑄}) ↔ (((𝑆𝑢) 𝑠) ∈ 𝐷 ∧ ((𝑆𝑢) 𝑠) ≠ 𝑄))
3124, 29, 30sylanbrc 582 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ (𝐷 ∖ {𝑄}))
3213, 14, 15, 12, 16, 31lsatlspsn 38949 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSAtoms‘𝐶))
336, 10, 7, 5, 11, 12, 8, 32mapdcnvatN 41623 . . 3 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSAtoms‘𝑈))
346, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27, 13, 15, 3, 22hdmaprnlem3uN 41808 . . . 4 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
3534necomd 3002 . . 3 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ≠ (𝑁‘{𝑢}))
366, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27, 13, 15, 3, 22hdmaprnlem3N 41807 . . . 4 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
3736necomd 3002 . . 3 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ≠ (𝑁‘{𝑣}))
38 eqid 2740 . . . . . . 7 (LSubSp‘𝐶) = (LSubSp‘𝐶)
39 eqid 2740 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
406, 7, 8dvhlmod 41067 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
411, 39, 4lspsncl 20998 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑢𝑉) → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈))
4240, 18, 41syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈))
436, 10, 7, 39, 11, 38, 8, 42mapdcl2 41613 . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ (LSubSp‘𝐶))
441, 39, 4lspsncl 20998 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
4540, 25, 44syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
466, 10, 7, 39, 11, 38, 8, 45mapdcl2 41613 . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ∈ (LSubSp‘𝐶))
47 eqid 2740 . . . . . . . . 9 (LSSum‘𝐶) = (LSSum‘𝐶)
4838, 47lsmcl 21105 . . . . . . . 8 ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑢})) ∈ (LSubSp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑣})) ∈ (LSubSp‘𝐶)) → ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))) ∈ (LSubSp‘𝐶))
4916, 43, 46, 48syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))) ∈ (LSubSp‘𝐶))
5038lsssssubg 20979 . . . . . . . . . 10 (𝐶 ∈ LMod → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
5116, 50syl 17 . . . . . . . . 9 (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶))
5251, 43sseldd 4009 . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ (SubGrp‘𝐶))
5351, 46sseldd 4009 . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ∈ (SubGrp‘𝐶))
5413, 14lspsnid 21014 . . . . . . . . . 10 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷) → (𝑆𝑢) ∈ (𝐿‘{(𝑆𝑢)}))
5516, 19, 54syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑆𝑢) ∈ (𝐿‘{(𝑆𝑢)}))
566, 7, 1, 4, 11, 14, 10, 17, 8, 18hdmap10 41797 . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{(𝑆𝑢)}))
5755, 56eleqtrrd 2847 . . . . . . . 8 (𝜑 → (𝑆𝑢) ∈ (𝑀‘(𝑁‘{𝑢})))
58 eqimss2 4068 . . . . . . . . . 10 ((𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}) → (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣})))
5926, 58syl 17 . . . . . . . . 9 (𝜑 → (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣})))
6013, 38, 14, 16, 46, 21ellspsn5b 21016 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝑀‘(𝑁‘{𝑣})) ↔ (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣}))))
6159, 60mpbird 257 . . . . . . . 8 (𝜑𝑠 ∈ (𝑀‘(𝑁‘{𝑣})))
6222, 47lsmelvali 19692 . . . . . . . 8 ((((𝑀‘(𝑁‘{𝑢})) ∈ (SubGrp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑣})) ∈ (SubGrp‘𝐶)) ∧ ((𝑆𝑢) ∈ (𝑀‘(𝑁‘{𝑢})) ∧ 𝑠 ∈ (𝑀‘(𝑁‘{𝑣})))) → ((𝑆𝑢) 𝑠) ∈ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))))
6352, 53, 57, 61, 62syl22anc 838 . . . . . . 7 (𝜑 → ((𝑆𝑢) 𝑠) ∈ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))))
6438, 14, 16, 49, 63ellspsn5 21017 . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ⊆ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))))
65 eqid 2740 . . . . . . 7 (LSSum‘𝑈) = (LSSum‘𝑈)
666, 10, 7, 39, 65, 11, 47, 8, 42, 45mapdlsm 41621 . . . . . 6 (𝜑 → (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) = ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))))
6764, 66sseqtrrd 4050 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ⊆ (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))))
6813, 38, 14lspsncl 20998 . . . . . . . 8 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
6916, 24, 68syl2anc 583 . . . . . . 7 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
706, 10, 11, 38, 8mapdrn2 41608 . . . . . . 7 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
7169, 70eleqtrrd 2847 . . . . . 6 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
7239, 65lsmcl 21105 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})) ∈ (LSubSp‘𝑈))
7340, 42, 45, 72syl3anc 1371 . . . . . . 7 (𝜑 → ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})) ∈ (LSubSp‘𝑈))
746, 10, 7, 39, 8, 73mapdcl 41610 . . . . . 6 (𝜑 → (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) ∈ ran 𝑀)
756, 10, 8, 71, 74mapdcnvordN 41615 . . . . 5 (𝜑 → ((𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ⊆ (𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))) ↔ (𝐿‘{((𝑆𝑢) 𝑠)}) ⊆ (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))))
7667, 75mpbird 257 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ⊆ (𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))))
771, 4, 65, 40, 18, 25lsmpr 21111 . . . . 5 (𝜑 → (𝑁‘{𝑢, 𝑣}) = ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))
786, 10, 7, 39, 8, 73mapdcnvid1N 41611 . . . . 5 (𝜑 → (𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))) = ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))
7977, 78eqtr4d 2783 . . . 4 (𝜑 → (𝑁‘{𝑢, 𝑣}) = (𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))))
8076, 79sseqtrrd 4050 . . 3 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ⊆ (𝑁‘{𝑢, 𝑣}))
811, 2, 3, 4, 5, 9, 33, 18, 25, 35, 37, 80lsatfixedN 38965 . 2 (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}))
82 simpr 484 . . . . . 6 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}))
838ad2antrr 725 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8440ad2antrr 725 . . . . . . . 8 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑈 ∈ LMod)
8518ad2antrr 725 . . . . . . . . 9 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑢𝑉)
8620ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑠 ∈ (𝐷 ∖ {𝑄}))
8725ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑣𝑉)
8826ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
8927ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
90 simplr 768 . . . . . . . . . 10 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
916, 7, 1, 4, 11, 14, 10, 17, 83, 86, 87, 88, 85, 89, 13, 15, 3, 22, 90hdmaprnlem4tN 41809 . . . . . . . . 9 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑡𝑉)
921, 2lmodvacl 20895 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑢𝑉𝑡𝑉) → (𝑢 + 𝑡) ∈ 𝑉)
9384, 85, 91, 92syl3anc 1371 . . . . . . . 8 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑢 + 𝑡) ∈ 𝑉)
941, 39, 4lspsncl 20998 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝑢 + 𝑡) ∈ 𝑉) → (𝑁‘{(𝑢 + 𝑡)}) ∈ (LSubSp‘𝑈))
9584, 93, 94syl2anc 583 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑁‘{(𝑢 + 𝑡)}) ∈ (LSubSp‘𝑈))
966, 10, 7, 39, 83, 95mapdcnvid1N 41611 . . . . . 6 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) = (𝑁‘{(𝑢 + 𝑡)}))
9782, 96eqtr4d 2783 . . . . 5 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)}))))
9871ad2antrr 725 . . . . . 6 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
996, 10, 7, 39, 83, 95mapdcl 41610 . . . . . 6 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝑁‘{(𝑢 + 𝑡)})) ∈ ran 𝑀)
1006, 10, 83, 98, 99mapdcnv11N 41616 . . . . 5 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → ((𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ↔ (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))))
10197, 100mpbid 232 . . . 4 (((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
102101ex 412 . . 3 ((𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) → ((𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}) → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))))
103102reximdva 3174 . 2 (𝜑 → (∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}) → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))))
10481, 103mpd 15 1 (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  {csn 4648  {cpr 4650  ccnv 5699  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  SubGrpcsubg 19160  LSSumclsm 19676  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LSAtomsclsa 38930  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  LCDualclcd 41543  mapdcmpd 41581  HDMapchdma 41749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352  df-lcdual 41544  df-mapd 41582  df-hvmap 41714  df-hdmap1 41750  df-hdmap 41751
This theorem is referenced by:  hdmaprnlem10N  41816
  Copyright terms: Public domain W3C validator