Proof of Theorem hdmaprnlem3eN
Step | Hyp | Ref
| Expression |
1 | | hdmaprnlem1.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
2 | | hdmaprnlem3e.p |
. . 3
⊢ + =
(+g‘𝑈) |
3 | | hdmaprnlem1.o |
. . 3
⊢ 0 =
(0g‘𝑈) |
4 | | hdmaprnlem1.n |
. . 3
⊢ 𝑁 = (LSpan‘𝑈) |
5 | | eqid 2738 |
. . 3
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
6 | | hdmaprnlem1.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | hdmaprnlem1.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
8 | | hdmaprnlem1.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 6, 7, 8 | dvhlvec 39050 |
. . 3
⊢ (𝜑 → 𝑈 ∈ LVec) |
10 | | hdmaprnlem1.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
11 | | hdmaprnlem1.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
12 | | eqid 2738 |
. . . 4
⊢
(LSAtoms‘𝐶) =
(LSAtoms‘𝐶) |
13 | | hdmaprnlem1.d |
. . . . 5
⊢ 𝐷 = (Base‘𝐶) |
14 | | hdmaprnlem1.l |
. . . . 5
⊢ 𝐿 = (LSpan‘𝐶) |
15 | | hdmaprnlem1.q |
. . . . 5
⊢ 𝑄 = (0g‘𝐶) |
16 | 6, 11, 8 | lcdlmod 39533 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ LMod) |
17 | | hdmaprnlem1.s |
. . . . . . . 8
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
18 | | hdmaprnlem1.ue |
. . . . . . . 8
⊢ (𝜑 → 𝑢 ∈ 𝑉) |
19 | 6, 7, 1, 11, 13, 17, 8, 18 | hdmapcl 39771 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
20 | | hdmaprnlem1.se |
. . . . . . . 8
⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
21 | 20 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝑠 ∈ 𝐷) |
22 | | hdmaprnlem1.a |
. . . . . . . 8
⊢ ✚ =
(+g‘𝐶) |
23 | 13, 22 | lmodvacl 20052 |
. . . . . . 7
⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
24 | 16, 19, 21, 23 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
25 | | hdmaprnlem1.ve |
. . . . . . . 8
⊢ (𝜑 → 𝑣 ∈ 𝑉) |
26 | | hdmaprnlem1.e |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
27 | | hdmaprnlem1.un |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
28 | 6, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27 | hdmaprnlem1N 39790 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) |
29 | 13, 22, 15, 14, 16, 19, 21, 28 | lmodindp1 20191 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ≠ 𝑄) |
30 | | eldifsn 4717 |
. . . . . 6
⊢ (((𝑆‘𝑢) ✚ 𝑠) ∈ (𝐷 ∖ {𝑄}) ↔ (((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷 ∧ ((𝑆‘𝑢) ✚ 𝑠) ≠ 𝑄)) |
31 | 24, 29, 30 | sylanbrc 582 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ (𝐷 ∖ {𝑄})) |
32 | 13, 14, 15, 12, 16, 31 | lsatlspsn 36934 |
. . . 4
⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSAtoms‘𝐶)) |
33 | 6, 10, 7, 5, 11, 12, 8, 32 | mapdcnvatN 39607 |
. . 3
⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ∈ (LSAtoms‘𝑈)) |
34 | 6, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27, 13, 15, 3, 22 | hdmaprnlem3uN 39792 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
35 | 34 | necomd 2998 |
. . 3
⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ≠ (𝑁‘{𝑢})) |
36 | 6, 7, 1, 4, 11, 14, 10, 17, 8, 20, 25, 26, 18, 27, 13, 15, 3, 22 | hdmaprnlem3N 39791 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
37 | 36 | necomd 2998 |
. . 3
⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ≠ (𝑁‘{𝑣})) |
38 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝐶) =
(LSubSp‘𝐶) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
40 | 6, 7, 8 | dvhlmod 39051 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LMod) |
41 | 1, 39, 4 | lspsncl 20154 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉) → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈)) |
42 | 40, 18, 41 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈)) |
43 | 6, 10, 7, 39, 11, 38, 8, 42 | mapdcl2 39597 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ (LSubSp‘𝐶)) |
44 | 1, 39, 4 | lspsncl 20154 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
45 | 40, 25, 44 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
46 | 6, 10, 7, 39, 11, 38, 8, 45 | mapdcl2 39597 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) ∈ (LSubSp‘𝐶)) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSSum‘𝐶) =
(LSSum‘𝐶) |
48 | 38, 47 | lsmcl 20260 |
. . . . . . . 8
⊢ ((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑢})) ∈ (LSubSp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑣})) ∈ (LSubSp‘𝐶)) → ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))) ∈ (LSubSp‘𝐶)) |
49 | 16, 43, 46, 48 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣}))) ∈ (LSubSp‘𝐶)) |
50 | 38 | lsssssubg 20135 |
. . . . . . . . . 10
⊢ (𝐶 ∈ LMod →
(LSubSp‘𝐶) ⊆
(SubGrp‘𝐶)) |
51 | 16, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (LSubSp‘𝐶) ⊆ (SubGrp‘𝐶)) |
52 | 51, 43 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) ∈ (SubGrp‘𝐶)) |
53 | 51, 46 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) ∈ (SubGrp‘𝐶)) |
54 | 13, 14 | lspsnid 20170 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷) → (𝑆‘𝑢) ∈ (𝐿‘{(𝑆‘𝑢)})) |
55 | 16, 19, 54 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝑢) ∈ (𝐿‘{(𝑆‘𝑢)})) |
56 | 6, 7, 1, 4, 11, 14, 10, 17, 8, 18 | hdmap10 39781 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐿‘{(𝑆‘𝑢)})) |
57 | 55, 56 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑢) ∈ (𝑀‘(𝑁‘{𝑢}))) |
58 | | eqimss2 3974 |
. . . . . . . . . 10
⊢ ((𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}) → (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣}))) |
59 | 26, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣}))) |
60 | 13, 38, 14, 16, 46, 21 | lspsnel5 20172 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (𝑀‘(𝑁‘{𝑣})) ↔ (𝐿‘{𝑠}) ⊆ (𝑀‘(𝑁‘{𝑣})))) |
61 | 59, 60 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑠 ∈ (𝑀‘(𝑁‘{𝑣}))) |
62 | 22, 47 | lsmelvali 19170 |
. . . . . . . 8
⊢ ((((𝑀‘(𝑁‘{𝑢})) ∈ (SubGrp‘𝐶) ∧ (𝑀‘(𝑁‘{𝑣})) ∈ (SubGrp‘𝐶)) ∧ ((𝑆‘𝑢) ∈ (𝑀‘(𝑁‘{𝑢})) ∧ 𝑠 ∈ (𝑀‘(𝑁‘{𝑣})))) → ((𝑆‘𝑢) ✚ 𝑠) ∈ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣})))) |
63 | 52, 53, 57, 61, 62 | syl22anc 835 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣})))) |
64 | 38, 14, 16, 49, 63 | lspsnel5a 20173 |
. . . . . 6
⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ⊆ ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣})))) |
65 | | eqid 2738 |
. . . . . . 7
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
66 | 6, 10, 7, 39, 65, 11, 47, 8, 42, 45 | mapdlsm 39605 |
. . . . . 6
⊢ (𝜑 → (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) = ((𝑀‘(𝑁‘{𝑢}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑣})))) |
67 | 64, 66 | sseqtrrd 3958 |
. . . . 5
⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ⊆ (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))) |
68 | 13, 38, 14 | lspsncl 20154 |
. . . . . . . 8
⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
69 | 16, 24, 68 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
70 | 6, 10, 11, 38, 8 | mapdrn2 39592 |
. . . . . . 7
⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
71 | 69, 70 | eleqtrrd 2842 |
. . . . . 6
⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
72 | 39, 65 | lsmcl 20260 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑢}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})) ∈ (LSubSp‘𝑈)) |
73 | 40, 42, 45, 72 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})) ∈ (LSubSp‘𝑈)) |
74 | 6, 10, 7, 39, 8, 73 | mapdcl 39594 |
. . . . . 6
⊢ (𝜑 → (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) ∈ ran 𝑀) |
75 | 6, 10, 8, 71, 74 | mapdcnvordN 39599 |
. . . . 5
⊢ (𝜑 → ((◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ⊆ (◡𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))) ↔ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ⊆ (𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))))) |
76 | 67, 75 | mpbird 256 |
. . . 4
⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ⊆ (◡𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))))) |
77 | 1, 4, 65, 40, 18, 25 | lsmpr 20266 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑢, 𝑣}) = ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) |
78 | 6, 10, 7, 39, 8, 73 | mapdcnvid1N 39595 |
. . . . 5
⊢ (𝜑 → (◡𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣})))) = ((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))) |
79 | 77, 78 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑢, 𝑣}) = (◡𝑀‘(𝑀‘((𝑁‘{𝑢})(LSSum‘𝑈)(𝑁‘{𝑣}))))) |
80 | 76, 79 | sseqtrrd 3958 |
. . 3
⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ⊆ (𝑁‘{𝑢, 𝑣})) |
81 | 1, 2, 3, 4, 5, 9, 33, 18, 25, 35, 37, 80 | lsatfixedN 36950 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) |
82 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) |
83 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
84 | 40 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑈 ∈ LMod) |
85 | 18 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑢 ∈ 𝑉) |
86 | 20 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
87 | 25 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑣 ∈ 𝑉) |
88 | 26 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
89 | 27 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
90 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
91 | 6, 7, 1, 4, 11, 14, 10, 17, 83, 86, 87, 88, 85, 89, 13, 15, 3, 22, 90 | hdmaprnlem4tN 39793 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → 𝑡 ∈ 𝑉) |
92 | 1, 2 | lmodvacl 20052 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉) → (𝑢 + 𝑡) ∈ 𝑉) |
93 | 84, 85, 91, 92 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑢 + 𝑡) ∈ 𝑉) |
94 | 1, 39, 4 | lspsncl 20154 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ (𝑢 + 𝑡) ∈ 𝑉) → (𝑁‘{(𝑢 + 𝑡)}) ∈ (LSubSp‘𝑈)) |
95 | 84, 93, 94 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑁‘{(𝑢 + 𝑡)}) ∈ (LSubSp‘𝑈)) |
96 | 6, 10, 7, 39, 83, 95 | mapdcnvid1N 39595 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (◡𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) = (𝑁‘{(𝑢 + 𝑡)})) |
97 | 82, 96 | eqtr4d 2781 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (◡𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)})))) |
98 | 71 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
99 | 6, 10, 7, 39, 83, 95 | mapdcl 39594 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝑀‘(𝑁‘{(𝑢 + 𝑡)})) ∈ ran 𝑀) |
100 | 6, 10, 83, 98, 99 | mapdcnv11N 39600 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → ((◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (◡𝑀‘(𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ↔ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))) |
101 | 97, 100 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ∧ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)})) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |
102 | 101 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) → ((◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))) |
103 | 102 | reximdva 3202 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) = (𝑁‘{(𝑢 + 𝑡)}) → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))) |
104 | 81, 103 | mpd 15 |
1
⊢ (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |