Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem20 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 39982. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | β’ π» = (LHypβπΎ) |
mapdpglem.m | β’ π = ((mapdβπΎ)βπ) |
mapdpglem.u | β’ π = ((DVecHβπΎ)βπ) |
mapdpglem.v | β’ π = (Baseβπ) |
mapdpglem.s | β’ β = (-gβπ) |
mapdpglem.n | β’ π = (LSpanβπ) |
mapdpglem.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdpglem.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdpglem.x | β’ (π β π β π) |
mapdpglem.y | β’ (π β π β π) |
mapdpglem1.p | β’ β = (LSSumβπΆ) |
mapdpglem2.j | β’ π½ = (LSpanβπΆ) |
mapdpglem3.f | β’ πΉ = (BaseβπΆ) |
mapdpglem3.te | β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) |
mapdpglem3.a | β’ π΄ = (Scalarβπ) |
mapdpglem3.b | β’ π΅ = (Baseβπ΄) |
mapdpglem3.t | β’ Β· = ( Β·π βπΆ) |
mapdpglem3.r | β’ π = (-gβπΆ) |
mapdpglem3.g | β’ (π β πΊ β πΉ) |
mapdpglem3.e | β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
mapdpglem4.q | β’ π = (0gβπ) |
mapdpglem.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdpglem4.jt | β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) |
mapdpglem4.z | β’ 0 = (0gβπ΄) |
mapdpglem4.g4 | β’ (π β π β π΅) |
mapdpglem4.z4 | β’ (π β π§ β (πβ(πβ{π}))) |
mapdpglem4.t4 | β’ (π β π‘ = ((π Β· πΊ)π π§)) |
mapdpglem4.xn | β’ (π β π β π) |
mapdpglem12.yn | β’ (π β π β π) |
mapdpglem17.ep | β’ πΈ = (((invrβπ΄)βπ) Β· π§) |
Ref | Expression |
---|---|
mapdpglem20 | β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 β’ (0gβπΆ) = (0gβπΆ) | |
2 | mapdpglem2.j | . 2 β’ π½ = (LSpanβπΆ) | |
3 | eqid 2736 | . 2 β’ (LSAtomsβπΆ) = (LSAtomsβπΆ) | |
4 | mapdpglem.h | . . 3 β’ π» = (LHypβπΎ) | |
5 | mapdpglem.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
6 | mapdpglem.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
7 | 4, 5, 6 | lcdlvec 39867 | . 2 β’ (π β πΆ β LVec) |
8 | mapdpglem.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
9 | mapdpglem.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
10 | eqid 2736 | . . 3 β’ (LSAtomsβπ) = (LSAtomsβπ) | |
11 | mapdpglem.v | . . . 4 β’ π = (Baseβπ) | |
12 | mapdpglem.n | . . . 4 β’ π = (LSpanβπ) | |
13 | mapdpglem4.q | . . . 4 β’ π = (0gβπ) | |
14 | 4, 9, 6 | dvhlmod 39386 | . . . 4 β’ (π β π β LMod) |
15 | mapdpglem.y | . . . . 5 β’ (π β π β π) | |
16 | mapdpglem12.yn | . . . . 5 β’ (π β π β π) | |
17 | eldifsn 4734 | . . . . 5 β’ (π β (π β {π}) β (π β π β§ π β π)) | |
18 | 15, 16, 17 | sylanbrc 583 | . . . 4 β’ (π β π β (π β {π})) |
19 | 11, 12, 13, 10, 14, 18 | lsatlspsn 37268 | . . 3 β’ (π β (πβ{π}) β (LSAtomsβπ)) |
20 | 4, 8, 9, 10, 5, 3, 6, 19 | mapdat 39943 | . 2 β’ (π β (πβ(πβ{π})) β (LSAtomsβπΆ)) |
21 | mapdpglem.s | . . 3 β’ β = (-gβπ) | |
22 | mapdpglem.x | . . 3 β’ (π β π β π) | |
23 | mapdpglem1.p | . . 3 β’ β = (LSSumβπΆ) | |
24 | mapdpglem3.f | . . 3 β’ πΉ = (BaseβπΆ) | |
25 | mapdpglem3.te | . . 3 β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) | |
26 | mapdpglem3.a | . . 3 β’ π΄ = (Scalarβπ) | |
27 | mapdpglem3.b | . . 3 β’ π΅ = (Baseβπ΄) | |
28 | mapdpglem3.t | . . 3 β’ Β· = ( Β·π βπΆ) | |
29 | mapdpglem3.r | . . 3 β’ π = (-gβπΆ) | |
30 | mapdpglem3.g | . . 3 β’ (π β πΊ β πΉ) | |
31 | mapdpglem3.e | . . 3 β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) | |
32 | mapdpglem.ne | . . 3 β’ (π β (πβ{π}) β (πβ{π})) | |
33 | mapdpglem4.jt | . . 3 β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) | |
34 | mapdpglem4.z | . . 3 β’ 0 = (0gβπ΄) | |
35 | mapdpglem4.g4 | . . 3 β’ (π β π β π΅) | |
36 | mapdpglem4.z4 | . . 3 β’ (π β π§ β (πβ(πβ{π}))) | |
37 | mapdpglem4.t4 | . . 3 β’ (π β π‘ = ((π Β· πΊ)π π§)) | |
38 | mapdpglem4.xn | . . 3 β’ (π β π β π) | |
39 | mapdpglem17.ep | . . 3 β’ πΈ = (((invrβπ΄)βπ) Β· π§) | |
40 | 4, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39 | mapdpglem19 39966 | . 2 β’ (π β πΈ β (πβ(πβ{π}))) |
41 | 4, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39 | mapdpglem18 39965 | . 2 β’ (π β πΈ β (0gβπΆ)) |
42 | 1, 2, 3, 7, 20, 40, 41 | lsatel 37280 | 1 β’ (π β (πβ(πβ{π})) = (π½β{πΈ})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1540 β wcel 2105 β wne 2940 β cdif 3895 {csn 4573 βcfv 6479 (class class class)co 7337 Basecbs 17009 Scalarcsca 17062 Β·π cvsca 17063 0gc0g 17247 -gcsg 18675 LSSumclsm 19335 invrcinvr 20008 LSpanclspn 20339 LSAtomsclsa 37249 HLchlt 37625 LHypclh 38260 DVecHcdvh 39354 LCDualclcd 39862 mapdcmpd 39900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-riotaBAD 37228 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-tpos 8112 df-undef 8159 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-0g 17249 df-mre 17392 df-mrc 17393 df-acs 17395 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-cntz 19019 df-oppg 19046 df-lsm 19337 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lvec 20471 df-lsatoms 37251 df-lshyp 37252 df-lcv 37294 df-lfl 37333 df-lkr 37361 df-ldual 37399 df-oposet 37451 df-ol 37453 df-oml 37454 df-covers 37541 df-ats 37542 df-atl 37573 df-cvlat 37597 df-hlat 37626 df-llines 37774 df-lplanes 37775 df-lvols 37776 df-lines 37777 df-psubsp 37779 df-pmap 37780 df-padd 38072 df-lhyp 38264 df-laut 38265 df-ldil 38380 df-ltrn 38381 df-trl 38435 df-tgrp 39019 df-tendo 39031 df-edring 39033 df-dveca 39279 df-disoa 39305 df-dvech 39355 df-dib 39415 df-dic 39449 df-dih 39505 df-doch 39624 df-djh 39671 df-lcdual 39863 df-mapd 39901 |
This theorem is referenced by: mapdpglem23 39970 |
Copyright terms: Public domain | W3C validator |