| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem20 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41825. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
| mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
| Ref | Expression |
|---|---|
| mapdpglem20 | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 2 | mapdpglem2.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 3 | eqid 2733 | . 2 ⊢ (LSAtoms‘𝐶) = (LSAtoms‘𝐶) | |
| 4 | mapdpglem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | mapdpglem.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 6 | mapdpglem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | lcdlvec 41710 | . 2 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 8 | mapdpglem.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 9 | mapdpglem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | eqid 2733 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 11 | mapdpglem.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 12 | mapdpglem.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 13 | mapdpglem4.q | . . . 4 ⊢ 𝑄 = (0g‘𝑈) | |
| 14 | 4, 9, 6 | dvhlmod 41229 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 15 | mapdpglem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 16 | mapdpglem12.yn | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 𝑄) | |
| 17 | eldifsn 4737 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ {𝑄}) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 𝑄)) | |
| 18 | 15, 16, 17 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ {𝑄})) |
| 19 | 11, 12, 13, 10, 14, 18 | lsatlspsn 39112 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSAtoms‘𝑈)) |
| 20 | 4, 8, 9, 10, 5, 3, 6, 19 | mapdat 41786 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSAtoms‘𝐶)) |
| 21 | mapdpglem.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 22 | mapdpglem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 23 | mapdpglem1.p | . . 3 ⊢ ⊕ = (LSSum‘𝐶) | |
| 24 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
| 25 | mapdpglem3.te | . . 3 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 26 | mapdpglem3.a | . . 3 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 27 | mapdpglem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 28 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 29 | mapdpglem3.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 30 | mapdpglem3.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 31 | mapdpglem3.e | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 32 | mapdpglem.ne | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 33 | mapdpglem4.jt | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 34 | mapdpglem4.z | . . 3 ⊢ 0 = (0g‘𝐴) | |
| 35 | mapdpglem4.g4 | . . 3 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 36 | mapdpglem4.z4 | . . 3 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 37 | mapdpglem4.t4 | . . 3 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 38 | mapdpglem4.xn | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 39 | mapdpglem17.ep | . . 3 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
| 40 | 4, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39 | mapdpglem19 41809 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| 41 | 4, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39 | mapdpglem18 41808 | . 2 ⊢ (𝜑 → 𝐸 ≠ (0g‘𝐶)) |
| 42 | 1, 2, 3, 7, 20, 40, 41 | lsatel 39124 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 -gcsg 18850 LSSumclsm 19548 invrcinvr 20307 LSpanclspn 20906 LSAtomsclsa 39093 HLchlt 39469 LHypclh 40103 DVecHcdvh 41197 LCDualclcd 41705 mapdcmpd 41743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-mre 17490 df-mrc 17491 df-acs 17493 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-nzr 20430 df-rlreg 20611 df-domn 20612 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-lsatoms 39095 df-lshyp 39096 df-lcv 39138 df-lfl 39177 df-lkr 39205 df-ldual 39243 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 df-lplanes 39618 df-lvols 39619 df-lines 39620 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-lhyp 40107 df-laut 40108 df-ldil 40223 df-ltrn 40224 df-trl 40278 df-tgrp 40862 df-tendo 40874 df-edring 40876 df-dveca 41122 df-disoa 41148 df-dvech 41198 df-dib 41258 df-dic 41292 df-dih 41348 df-doch 41467 df-djh 41514 df-lcdual 41706 df-mapd 41744 |
| This theorem is referenced by: mapdpglem23 41813 |
| Copyright terms: Public domain | W3C validator |