Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem20 Structured version   Visualization version   GIF version

Theorem mapdpglem20 37840
Description: Lemma for mapdpg 37855. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem20 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem20
StepHypRef Expression
1 eqid 2777 . 2 (0g𝐶) = (0g𝐶)
2 mapdpglem2.j . 2 𝐽 = (LSpan‘𝐶)
3 eqid 2777 . 2 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
4 mapdpglem.h . . 3 𝐻 = (LHyp‘𝐾)
5 mapdpglem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 mapdpglem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlvec 37740 . 2 (𝜑𝐶 ∈ LVec)
8 mapdpglem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdpglem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2777 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
11 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdpglem.n . . . 4 𝑁 = (LSpan‘𝑈)
13 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
144, 9, 6dvhlmod 37259 . . . 4 (𝜑𝑈 ∈ LMod)
15 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
16 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
17 eldifsn 4549 . . . . 5 (𝑌 ∈ (𝑉 ∖ {𝑄}) ↔ (𝑌𝑉𝑌𝑄))
1815, 16, 17sylanbrc 578 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ {𝑄}))
1911, 12, 13, 10, 14, 18lsatlspsn 35142 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (LSAtoms‘𝑈))
204, 8, 9, 10, 5, 3, 6, 19mapdat 37816 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSAtoms‘𝐶))
21 mapdpglem.s . . 3 = (-g𝑈)
22 mapdpglem.x . . 3 (𝜑𝑋𝑉)
23 mapdpglem1.p . . 3 = (LSSum‘𝐶)
24 mapdpglem3.f . . 3 𝐹 = (Base‘𝐶)
25 mapdpglem3.te . . 3 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
26 mapdpglem3.a . . 3 𝐴 = (Scalar‘𝑈)
27 mapdpglem3.b . . 3 𝐵 = (Base‘𝐴)
28 mapdpglem3.t . . 3 · = ( ·𝑠𝐶)
29 mapdpglem3.r . . 3 𝑅 = (-g𝐶)
30 mapdpglem3.g . . 3 (𝜑𝐺𝐹)
31 mapdpglem3.e . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32 mapdpglem.ne . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
33 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
34 mapdpglem4.z . . 3 0 = (0g𝐴)
35 mapdpglem4.g4 . . 3 (𝜑𝑔𝐵)
36 mapdpglem4.z4 . . 3 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
37 mapdpglem4.t4 . . 3 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
38 mapdpglem4.xn . . 3 (𝜑𝑋𝑄)
39 mapdpglem17.ep . . 3 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
404, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem19 37839 . 2 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
414, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem18 37838 . 2 (𝜑𝐸 ≠ (0g𝐶))
421, 2, 3, 7, 20, 40, 41lsatel 35154 1 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968  cdif 3788  {csn 4397  cfv 6135  (class class class)co 6922  Basecbs 16255  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  -gcsg 17811  LSSumclsm 18433  invrcinvr 19058  LSpanclspn 19366  LSAtomsclsa 35123  HLchlt 35499  LHypclh 36133  DVecHcdvh 37227  LCDualclcd 37735  mapdcmpd 37773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-riotaBAD 35102
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-undef 7681  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-0g 16488  df-mre 16632  df-mrc 16633  df-acs 16635  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-cntz 18133  df-oppg 18159  df-lsm 18435  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lvec 19498  df-lsatoms 35125  df-lshyp 35126  df-lcv 35168  df-lfl 35207  df-lkr 35235  df-ldual 35273  df-oposet 35325  df-ol 35327  df-oml 35328  df-covers 35415  df-ats 35416  df-atl 35447  df-cvlat 35471  df-hlat 35500  df-llines 35647  df-lplanes 35648  df-lvols 35649  df-lines 35650  df-psubsp 35652  df-pmap 35653  df-padd 35945  df-lhyp 36137  df-laut 36138  df-ldil 36253  df-ltrn 36254  df-trl 36308  df-tgrp 36892  df-tendo 36904  df-edring 36906  df-dveca 37152  df-disoa 37178  df-dvech 37228  df-dib 37288  df-dic 37322  df-dih 37378  df-doch 37497  df-djh 37544  df-lcdual 37736  df-mapd 37774
This theorem is referenced by:  mapdpglem23  37843
  Copyright terms: Public domain W3C validator