Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem20 Structured version   Visualization version   GIF version

Theorem mapdpglem20 41652
Description: Lemma for mapdpg 41667. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem20 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem20
StepHypRef Expression
1 eqid 2734 . 2 (0g𝐶) = (0g𝐶)
2 mapdpglem2.j . 2 𝐽 = (LSpan‘𝐶)
3 eqid 2734 . 2 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
4 mapdpglem.h . . 3 𝐻 = (LHyp‘𝐾)
5 mapdpglem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 mapdpglem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlvec 41552 . 2 (𝜑𝐶 ∈ LVec)
8 mapdpglem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdpglem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2734 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
11 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdpglem.n . . . 4 𝑁 = (LSpan‘𝑈)
13 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
144, 9, 6dvhlmod 41071 . . . 4 (𝜑𝑈 ∈ LMod)
15 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
16 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
17 eldifsn 4766 . . . . 5 (𝑌 ∈ (𝑉 ∖ {𝑄}) ↔ (𝑌𝑉𝑌𝑄))
1815, 16, 17sylanbrc 583 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ {𝑄}))
1911, 12, 13, 10, 14, 18lsatlspsn 38953 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (LSAtoms‘𝑈))
204, 8, 9, 10, 5, 3, 6, 19mapdat 41628 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSAtoms‘𝐶))
21 mapdpglem.s . . 3 = (-g𝑈)
22 mapdpglem.x . . 3 (𝜑𝑋𝑉)
23 mapdpglem1.p . . 3 = (LSSum‘𝐶)
24 mapdpglem3.f . . 3 𝐹 = (Base‘𝐶)
25 mapdpglem3.te . . 3 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
26 mapdpglem3.a . . 3 𝐴 = (Scalar‘𝑈)
27 mapdpglem3.b . . 3 𝐵 = (Base‘𝐴)
28 mapdpglem3.t . . 3 · = ( ·𝑠𝐶)
29 mapdpglem3.r . . 3 𝑅 = (-g𝐶)
30 mapdpglem3.g . . 3 (𝜑𝐺𝐹)
31 mapdpglem3.e . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32 mapdpglem.ne . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
33 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
34 mapdpglem4.z . . 3 0 = (0g𝐴)
35 mapdpglem4.g4 . . 3 (𝜑𝑔𝐵)
36 mapdpglem4.z4 . . 3 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
37 mapdpglem4.t4 . . 3 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
38 mapdpglem4.xn . . 3 (𝜑𝑋𝑄)
39 mapdpglem17.ep . . 3 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
404, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem19 41651 . 2 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
414, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem18 41650 . 2 (𝜑𝐸 ≠ (0g𝐶))
421, 2, 3, 7, 20, 40, 41lsatel 38965 1 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  {csn 4606  cfv 6541  (class class class)co 7413  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  -gcsg 18922  LSSumclsm 19620  invrcinvr 20355  LSpanclspn 20937  LSAtomsclsa 38934  HLchlt 39310  LHypclh 39945  DVecHcdvh 41039  LCDualclcd 41547  mapdcmpd 41585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-0g 17457  df-mre 17600  df-mrc 17601  df-acs 17603  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cntz 19304  df-oppg 19333  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-nzr 20481  df-rlreg 20662  df-domn 20663  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lvec 21070  df-lsatoms 38936  df-lshyp 38937  df-lcv 38979  df-lfl 39018  df-lkr 39046  df-ldual 39084  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120  df-tgrp 40704  df-tendo 40716  df-edring 40718  df-dveca 40964  df-disoa 40990  df-dvech 41040  df-dib 41100  df-dic 41134  df-dih 41190  df-doch 41309  df-djh 41356  df-lcdual 41548  df-mapd 41586
This theorem is referenced by:  mapdpglem23  41655
  Copyright terms: Public domain W3C validator