Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem20 Structured version   Visualization version   GIF version

Theorem mapdpglem20 41688
Description: Lemma for mapdpg 41703. Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem20 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem20
StepHypRef Expression
1 eqid 2737 . 2 (0g𝐶) = (0g𝐶)
2 mapdpglem2.j . 2 𝐽 = (LSpan‘𝐶)
3 eqid 2737 . 2 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
4 mapdpglem.h . . 3 𝐻 = (LHyp‘𝐾)
5 mapdpglem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 mapdpglem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlvec 41588 . 2 (𝜑𝐶 ∈ LVec)
8 mapdpglem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdpglem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2737 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
11 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdpglem.n . . . 4 𝑁 = (LSpan‘𝑈)
13 mapdpglem4.q . . . 4 𝑄 = (0g𝑈)
144, 9, 6dvhlmod 41107 . . . 4 (𝜑𝑈 ∈ LMod)
15 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
16 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
17 eldifsn 4794 . . . . 5 (𝑌 ∈ (𝑉 ∖ {𝑄}) ↔ (𝑌𝑉𝑌𝑄))
1815, 16, 17sylanbrc 583 . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ {𝑄}))
1911, 12, 13, 10, 14, 18lsatlspsn 38989 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (LSAtoms‘𝑈))
204, 8, 9, 10, 5, 3, 6, 19mapdat 41664 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSAtoms‘𝐶))
21 mapdpglem.s . . 3 = (-g𝑈)
22 mapdpglem.x . . 3 (𝜑𝑋𝑉)
23 mapdpglem1.p . . 3 = (LSSum‘𝐶)
24 mapdpglem3.f . . 3 𝐹 = (Base‘𝐶)
25 mapdpglem3.te . . 3 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
26 mapdpglem3.a . . 3 𝐴 = (Scalar‘𝑈)
27 mapdpglem3.b . . 3 𝐵 = (Base‘𝐴)
28 mapdpglem3.t . . 3 · = ( ·𝑠𝐶)
29 mapdpglem3.r . . 3 𝑅 = (-g𝐶)
30 mapdpglem3.g . . 3 (𝜑𝐺𝐹)
31 mapdpglem3.e . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
32 mapdpglem.ne . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
33 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
34 mapdpglem4.z . . 3 0 = (0g𝐴)
35 mapdpglem4.g4 . . 3 (𝜑𝑔𝐵)
36 mapdpglem4.z4 . . 3 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
37 mapdpglem4.t4 . . 3 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
38 mapdpglem4.xn . . 3 (𝜑𝑋𝑄)
39 mapdpglem17.ep . . 3 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
404, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem19 41687 . 2 (𝜑𝐸 ∈ (𝑀‘(𝑁‘{𝑌})))
414, 8, 9, 11, 21, 12, 5, 6, 22, 15, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 13, 32, 33, 34, 35, 36, 37, 38, 16, 39mapdpglem18 41686 . 2 (𝜑𝐸 ≠ (0g𝐶))
421, 2, 3, 7, 20, 40, 41lsatel 39001 1 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐸}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940  cdif 3963  {csn 4634  cfv 6569  (class class class)co 7438  Basecbs 17254  Scalarcsca 17310   ·𝑠 cvsca 17311  0gc0g 17495  -gcsg 18975  LSSumclsm 19676  invrcinvr 20413  LSpanclspn 20996  LSAtomsclsa 38970  HLchlt 39346  LHypclh 39981  DVecHcdvh 41075  LCDualclcd 41583  mapdcmpd 41621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-riotaBAD 38949
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-1st 8022  df-2nd 8023  df-tpos 8259  df-undef 8306  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-sca 17323  df-vsca 17324  df-0g 17497  df-mre 17640  df-mrc 17641  df-acs 17643  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-p1 18493  df-lat 18499  df-clat 18566  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20720  df-domn 20721  df-drng 20757  df-lmod 20886  df-lss 20957  df-lsp 20997  df-lvec 21129  df-lsatoms 38972  df-lshyp 38973  df-lcv 39015  df-lfl 39054  df-lkr 39082  df-ldual 39120  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-llines 39495  df-lplanes 39496  df-lvols 39497  df-lines 39498  df-psubsp 39500  df-pmap 39501  df-padd 39793  df-lhyp 39985  df-laut 39986  df-ldil 40101  df-ltrn 40102  df-trl 40156  df-tgrp 40740  df-tendo 40752  df-edring 40754  df-dveca 41000  df-disoa 41026  df-dvech 41076  df-dib 41136  df-dic 41170  df-dih 41226  df-doch 41345  df-djh 41392  df-lcdual 41584  df-mapd 41622
This theorem is referenced by:  mapdpglem23  41691
  Copyright terms: Public domain W3C validator