Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem20 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39908. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem20.e | ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) |
Ref | Expression |
---|---|
lcfrlem20 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfrlem17.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | eqid 2737 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
4 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 39433 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3920 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3920 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | 1, 2, 3, 7, 9, 11 | lsmpr 20464 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) |
13 | 12 | ineq1d 4169 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
14 | eqid 2737 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
15 | eqid 2737 | . . 3 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
16 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
17 | 4, 5, 6 | dvhlvec 39432 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
19 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
20 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
21 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
22 | 4, 18, 5, 1, 20, 19, 2, 16, 6, 8, 10, 21 | lcfrlem17 39882 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
23 | 4, 18, 5, 1, 19, 15, 6, 22 | dochsnshp 39776 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈)) |
24 | 1, 2, 19, 16, 7, 8 | lsatlspsn 37315 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
25 | 1, 2, 19, 16, 7, 10 | lsatlspsn 37315 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ 𝐴) |
26 | lcfrlem20.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
27 | 1, 20 | lmodvacl 20250 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
28 | 7, 9, 11, 27 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
29 | 28 | snssd 4767 | . . . . . 6 ⊢ (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉) |
30 | 4, 5, 1, 14, 18 | dochlss 39677 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
31 | 6, 29, 30 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
32 | 1, 14, 2, 7, 31, 9 | lspsnel5 20370 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
33 | 26, 32 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)})) |
34 | 14, 3, 15, 16, 17, 23, 24, 25, 21, 33 | lshpat 37378 | . 2 ⊢ (𝜑 → (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
35 | 13, 34 | eqeltrd 2838 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3905 ∩ cin 3907 ⊆ wss 3908 {csn 4584 {cpr 4586 ‘cfv 6491 (class class class)co 7349 Basecbs 17017 +gcplusg 17067 0gc0g 17255 LSSumclsm 19343 LModclmod 20236 LSubSpclss 20306 LSpanclspn 20346 LSAtomsclsa 37296 LSHypclsh 37297 HLchlt 37672 LHypclh 38307 DVecHcdvh 39401 ocHcoch 39670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-riotaBAD 37275 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-tpos 8124 df-undef 8171 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-er 8581 df-map 8700 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-3 12150 df-4 12151 df-5 12152 df-6 12153 df-n0 12347 df-z 12433 df-uz 12696 df-fz 13353 df-struct 16953 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-mulr 17081 df-sca 17083 df-vsca 17084 df-0g 17257 df-mre 17400 df-mrc 17401 df-acs 17403 df-proset 18118 df-poset 18136 df-plt 18153 df-lub 18169 df-glb 18170 df-join 18171 df-meet 18172 df-p0 18248 df-p1 18249 df-lat 18255 df-clat 18322 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-submnd 18536 df-grp 18684 df-minusg 18685 df-sbg 18686 df-subg 18856 df-cntz 19027 df-oppg 19054 df-lsm 19345 df-cmn 19491 df-abl 19492 df-mgp 19823 df-ur 19840 df-ring 19887 df-oppr 19964 df-dvdsr 19985 df-unit 19986 df-invr 20016 df-dvr 20027 df-drng 20102 df-lmod 20238 df-lss 20307 df-lsp 20347 df-lvec 20478 df-lsatoms 37298 df-lshyp 37299 df-lcv 37341 df-oposet 37498 df-ol 37500 df-oml 37501 df-covers 37588 df-ats 37589 df-atl 37620 df-cvlat 37644 df-hlat 37673 df-llines 37821 df-lplanes 37822 df-lvols 37823 df-lines 37824 df-psubsp 37826 df-pmap 37827 df-padd 38119 df-lhyp 38311 df-laut 38312 df-ldil 38427 df-ltrn 38428 df-trl 38482 df-tgrp 39066 df-tendo 39078 df-edring 39080 df-dveca 39326 df-disoa 39352 df-dvech 39402 df-dib 39462 df-dic 39496 df-dih 39552 df-doch 39671 df-djh 39718 |
This theorem is referenced by: lcfrlem21 39886 |
Copyright terms: Public domain | W3C validator |