Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem20 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39362. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem20.e | ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) |
Ref | Expression |
---|---|
lcfrlem20 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfrlem17.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | eqid 2738 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
4 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 38887 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3892 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3892 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | 1, 2, 3, 7, 9, 11 | lsmpr 20150 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) |
13 | 12 | ineq1d 4140 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
14 | eqid 2738 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
15 | eqid 2738 | . . 3 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
16 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
17 | 4, 5, 6 | dvhlvec 38886 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
19 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
20 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
21 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
22 | 4, 18, 5, 1, 20, 19, 2, 16, 6, 8, 10, 21 | lcfrlem17 39336 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
23 | 4, 18, 5, 1, 19, 15, 6, 22 | dochsnshp 39230 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈)) |
24 | 1, 2, 19, 16, 7, 8 | lsatlspsn 36770 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
25 | 1, 2, 19, 16, 7, 10 | lsatlspsn 36770 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ 𝐴) |
26 | lcfrlem20.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
27 | 1, 20 | lmodvacl 19937 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
28 | 7, 9, 11, 27 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
29 | 28 | snssd 4736 | . . . . . 6 ⊢ (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉) |
30 | 4, 5, 1, 14, 18 | dochlss 39131 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
31 | 6, 29, 30 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
32 | 1, 14, 2, 7, 31, 9 | lspsnel5 20056 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
33 | 26, 32 | mtbid 327 | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)})) |
34 | 14, 3, 15, 16, 17, 23, 24, 25, 21, 33 | lshpat 36833 | . 2 ⊢ (𝜑 → (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
35 | 13, 34 | eqeltrd 2839 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∖ cdif 3877 ∩ cin 3879 ⊆ wss 3880 {csn 4555 {cpr 4557 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 +gcplusg 16826 0gc0g 16968 LSSumclsm 19047 LModclmod 19923 LSubSpclss 19992 LSpanclspn 20032 LSAtomsclsa 36751 LSHypclsh 36752 HLchlt 37127 LHypclh 37761 DVecHcdvh 38855 ocHcoch 39124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-riotaBAD 36730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-tpos 7988 df-undef 8035 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-0g 16970 df-mre 17113 df-mrc 17114 df-acs 17116 df-proset 17826 df-poset 17844 df-plt 17860 df-lub 17876 df-glb 17877 df-join 17878 df-meet 17879 df-p0 17955 df-p1 17956 df-lat 17962 df-clat 18029 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-submnd 18243 df-grp 18392 df-minusg 18393 df-sbg 18394 df-subg 18564 df-cntz 18735 df-oppg 18762 df-lsm 19049 df-cmn 19196 df-abl 19197 df-mgp 19529 df-ur 19541 df-ring 19588 df-oppr 19665 df-dvdsr 19683 df-unit 19684 df-invr 19714 df-dvr 19725 df-drng 19793 df-lmod 19925 df-lss 19993 df-lsp 20033 df-lvec 20164 df-lsatoms 36753 df-lshyp 36754 df-lcv 36796 df-oposet 36953 df-ol 36955 df-oml 36956 df-covers 37043 df-ats 37044 df-atl 37075 df-cvlat 37099 df-hlat 37128 df-llines 37275 df-lplanes 37276 df-lvols 37277 df-lines 37278 df-psubsp 37280 df-pmap 37281 df-padd 37573 df-lhyp 37765 df-laut 37766 df-ldil 37881 df-ltrn 37882 df-trl 37936 df-tgrp 38520 df-tendo 38532 df-edring 38534 df-dveca 38780 df-disoa 38806 df-dvech 38856 df-dib 38916 df-dic 38950 df-dih 39006 df-doch 39125 df-djh 39172 |
This theorem is referenced by: lcfrlem21 39340 |
Copyright terms: Public domain | W3C validator |