![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem20 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41144. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | β’ π» = (LHypβπΎ) |
lcfrlem17.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcfrlem17.u | β’ π = ((DVecHβπΎ)βπ) |
lcfrlem17.v | β’ π = (Baseβπ) |
lcfrlem17.p | β’ + = (+gβπ) |
lcfrlem17.z | β’ 0 = (0gβπ) |
lcfrlem17.n | β’ π = (LSpanβπ) |
lcfrlem17.a | β’ π΄ = (LSAtomsβπ) |
lcfrlem17.k | β’ (π β (πΎ β HL β§ π β π»)) |
lcfrlem17.x | β’ (π β π β (π β { 0 })) |
lcfrlem17.y | β’ (π β π β (π β { 0 })) |
lcfrlem17.ne | β’ (π β (πβ{π}) β (πβ{π})) |
lcfrlem20.e | β’ (π β Β¬ π β ( β₯ β{(π + π)})) |
Ref | Expression |
---|---|
lcfrlem20 | β’ (π β ((πβ{π, π}) β© ( β₯ β{(π + π)})) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.v | . . . 4 β’ π = (Baseβπ) | |
2 | lcfrlem17.n | . . . 4 β’ π = (LSpanβπ) | |
3 | eqid 2725 | . . . 4 β’ (LSSumβπ) = (LSSumβπ) | |
4 | lcfrlem17.h | . . . . 5 β’ π» = (LHypβπΎ) | |
5 | lcfrlem17.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
6 | lcfrlem17.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
7 | 4, 5, 6 | dvhlmod 40669 | . . . 4 β’ (π β π β LMod) |
8 | lcfrlem17.x | . . . . 5 β’ (π β π β (π β { 0 })) | |
9 | 8 | eldifad 3957 | . . . 4 β’ (π β π β π) |
10 | lcfrlem17.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
11 | 10 | eldifad 3957 | . . . 4 β’ (π β π β π) |
12 | 1, 2, 3, 7, 9, 11 | lsmpr 20979 | . . 3 β’ (π β (πβ{π, π}) = ((πβ{π})(LSSumβπ)(πβ{π}))) |
13 | 12 | ineq1d 4210 | . 2 β’ (π β ((πβ{π, π}) β© ( β₯ β{(π + π)})) = (((πβ{π})(LSSumβπ)(πβ{π})) β© ( β₯ β{(π + π)}))) |
14 | eqid 2725 | . . 3 β’ (LSubSpβπ) = (LSubSpβπ) | |
15 | eqid 2725 | . . 3 β’ (LSHypβπ) = (LSHypβπ) | |
16 | lcfrlem17.a | . . 3 β’ π΄ = (LSAtomsβπ) | |
17 | 4, 5, 6 | dvhlvec 40668 | . . 3 β’ (π β π β LVec) |
18 | lcfrlem17.o | . . . 4 β’ β₯ = ((ocHβπΎ)βπ) | |
19 | lcfrlem17.z | . . . 4 β’ 0 = (0gβπ) | |
20 | lcfrlem17.p | . . . . 5 β’ + = (+gβπ) | |
21 | lcfrlem17.ne | . . . . 5 β’ (π β (πβ{π}) β (πβ{π})) | |
22 | 4, 18, 5, 1, 20, 19, 2, 16, 6, 8, 10, 21 | lcfrlem17 41118 | . . . 4 β’ (π β (π + π) β (π β { 0 })) |
23 | 4, 18, 5, 1, 19, 15, 6, 22 | dochsnshp 41012 | . . 3 β’ (π β ( β₯ β{(π + π)}) β (LSHypβπ)) |
24 | 1, 2, 19, 16, 7, 8 | lsatlspsn 38551 | . . 3 β’ (π β (πβ{π}) β π΄) |
25 | 1, 2, 19, 16, 7, 10 | lsatlspsn 38551 | . . 3 β’ (π β (πβ{π}) β π΄) |
26 | lcfrlem20.e | . . . 4 β’ (π β Β¬ π β ( β₯ β{(π + π)})) | |
27 | 1, 20 | lmodvacl 20763 | . . . . . . . 8 β’ ((π β LMod β§ π β π β§ π β π) β (π + π) β π) |
28 | 7, 9, 11, 27 | syl3anc 1368 | . . . . . . 7 β’ (π β (π + π) β π) |
29 | 28 | snssd 4813 | . . . . . 6 β’ (π β {(π + π)} β π) |
30 | 4, 5, 1, 14, 18 | dochlss 40913 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ {(π + π)} β π) β ( β₯ β{(π + π)}) β (LSubSpβπ)) |
31 | 6, 29, 30 | syl2anc 582 | . . . . 5 β’ (π β ( β₯ β{(π + π)}) β (LSubSpβπ)) |
32 | 1, 14, 2, 7, 31, 9 | lspsnel5 20884 | . . . 4 β’ (π β (π β ( β₯ β{(π + π)}) β (πβ{π}) β ( β₯ β{(π + π)}))) |
33 | 26, 32 | mtbid 323 | . . 3 β’ (π β Β¬ (πβ{π}) β ( β₯ β{(π + π)})) |
34 | 14, 3, 15, 16, 17, 23, 24, 25, 21, 33 | lshpat 38614 | . 2 β’ (π β (((πβ{π})(LSSumβπ)(πβ{π})) β© ( β₯ β{(π + π)})) β π΄) |
35 | 13, 34 | eqeltrd 2825 | 1 β’ (π β ((πβ{π, π}) β© ( β₯ β{(π + π)})) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β cdif 3942 β© cin 3944 β wss 3945 {csn 4629 {cpr 4631 βcfv 6547 (class class class)co 7417 Basecbs 17180 +gcplusg 17233 0gc0g 17421 LSSumclsm 19594 LModclmod 20748 LSubSpclss 20820 LSpanclspn 20860 LSAtomsclsa 38532 LSHypclsh 38533 HLchlt 38908 LHypclh 39543 DVecHcdvh 40637 ocHcoch 40906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38511 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-0g 17423 df-mre 17566 df-mrc 17567 df-acs 17569 df-proset 18287 df-poset 18305 df-plt 18322 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-p0 18417 df-p1 18418 df-lat 18424 df-clat 18491 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-cntz 19273 df-oppg 19302 df-lsm 19596 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-dvr 20345 df-drng 20631 df-lmod 20750 df-lss 20821 df-lsp 20861 df-lvec 20993 df-lsatoms 38534 df-lshyp 38535 df-lcv 38577 df-oposet 38734 df-ol 38736 df-oml 38737 df-covers 38824 df-ats 38825 df-atl 38856 df-cvlat 38880 df-hlat 38909 df-llines 39057 df-lplanes 39058 df-lvols 39059 df-lines 39060 df-psubsp 39062 df-pmap 39063 df-padd 39355 df-lhyp 39547 df-laut 39548 df-ldil 39663 df-ltrn 39664 df-trl 39718 df-tgrp 40302 df-tendo 40314 df-edring 40316 df-dveca 40562 df-disoa 40588 df-dvech 40638 df-dib 40698 df-dic 40732 df-dih 40788 df-doch 40907 df-djh 40954 |
This theorem is referenced by: lcfrlem21 41122 |
Copyright terms: Public domain | W3C validator |