| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem20 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41574. (Contributed by NM, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem17.p | ⊢ + = (+g‘𝑈) |
| lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem20.e | ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| Ref | Expression |
|---|---|
| lcfrlem20 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | lcfrlem17.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 3 | eqid 2730 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
| 4 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | dvhlmod 41099 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 9 | 8 | eldifad 3928 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 10 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 11 | 10 | eldifad 3928 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 12 | 1, 2, 3, 7, 9, 11 | lsmpr 21002 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) |
| 13 | 12 | ineq1d 4184 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
| 14 | eqid 2730 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 15 | eqid 2730 | . . 3 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
| 16 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 17 | 4, 5, 6 | dvhlvec 41098 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 18 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 19 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 20 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 21 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 22 | 4, 18, 5, 1, 20, 19, 2, 16, 6, 8, 10, 21 | lcfrlem17 41548 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
| 23 | 4, 18, 5, 1, 19, 15, 6, 22 | dochsnshp 41442 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈)) |
| 24 | 1, 2, 19, 16, 7, 8 | lsatlspsn 38981 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
| 25 | 1, 2, 19, 16, 7, 10 | lsatlspsn 38981 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ 𝐴) |
| 26 | lcfrlem20.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 27 | 1, 20 | lmodvacl 20787 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 28 | 7, 9, 11, 27 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 29 | 28 | snssd 4775 | . . . . . 6 ⊢ (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉) |
| 30 | 4, 5, 1, 14, 18 | dochlss 41343 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 31 | 6, 29, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 32 | 1, 14, 2, 7, 31, 9 | ellspsn5b 20907 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
| 33 | 26, 32 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| 34 | 14, 3, 15, 16, 17, 23, 24, 25, 21, 33 | lshpat 39044 | . 2 ⊢ (𝜑 → (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
| 35 | 13, 34 | eqeltrd 2829 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 {csn 4591 {cpr 4593 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 LSSumclsm 19570 LModclmod 20772 LSubSpclss 20843 LSpanclspn 20883 LSAtomsclsa 38962 LSHypclsh 38963 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 ocHcoch 41336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17410 df-mre 17553 df-mrc 17554 df-acs 17556 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cntz 19255 df-oppg 19284 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 df-lsatoms 38964 df-lshyp 38965 df-lcv 39007 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tgrp 40732 df-tendo 40744 df-edring 40746 df-dveca 40992 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 df-doch 41337 df-djh 41384 |
| This theorem is referenced by: lcfrlem21 41552 |
| Copyright terms: Public domain | W3C validator |