![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem20 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 37655. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem20.e | ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) |
Ref | Expression |
---|---|
lcfrlem20 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfrlem17.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | eqid 2825 | . . . 4 ⊢ (LSSum‘𝑈) = (LSSum‘𝑈) | |
4 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 37180 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lcfrlem17.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3810 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3810 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
12 | 1, 2, 3, 7, 9, 11 | lsmpr 19455 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) |
13 | 12 | ineq1d 4042 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
14 | eqid 2825 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
15 | eqid 2825 | . . 3 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
16 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
17 | 4, 5, 6 | dvhlvec 37179 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | lcfrlem17.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
19 | lcfrlem17.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
20 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
21 | lcfrlem17.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
22 | 4, 18, 5, 1, 20, 19, 2, 16, 6, 8, 10, 21 | lcfrlem17 37629 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
23 | 4, 18, 5, 1, 19, 15, 6, 22 | dochsnshp 37523 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈)) |
24 | 1, 2, 19, 16, 7, 8 | lsatlspsn 35063 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) |
25 | 1, 2, 19, 16, 7, 10 | lsatlspsn 35063 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ 𝐴) |
26 | lcfrlem20.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
27 | 1, 20 | lmodvacl 19240 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
28 | 7, 9, 11, 27 | syl3anc 1494 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
29 | 28 | snssd 4560 | . . . . . 6 ⊢ (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉) |
30 | 4, 5, 1, 14, 18 | dochlss 37424 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
31 | 6, 29, 30 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
32 | 1, 14, 2, 7, 31, 9 | lspsnel5 19361 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
33 | 26, 32 | mtbid 316 | . . 3 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘{(𝑋 + 𝑌)})) |
34 | 14, 3, 15, 16, 17, 23, 24, 25, 21, 33 | lshpat 35126 | . 2 ⊢ (𝜑 → (((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
35 | 13, 34 | eqeltrd 2906 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∖ cdif 3795 ∩ cin 3797 ⊆ wss 3798 {csn 4399 {cpr 4401 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 0gc0g 16460 LSSumclsm 18407 LModclmod 19226 LSubSpclss 19295 LSpanclspn 19337 LSAtomsclsa 35044 LSHypclsh 35045 HLchlt 35420 LHypclh 36054 DVecHcdvh 37148 ocHcoch 37417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-undef 7669 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-0g 16462 df-mre 16606 df-mrc 16607 df-acs 16609 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-grp 17786 df-minusg 17787 df-sbg 17788 df-subg 17949 df-cntz 18107 df-oppg 18133 df-lsm 18409 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-drng 19112 df-lmod 19228 df-lss 19296 df-lsp 19338 df-lvec 19469 df-lsatoms 35046 df-lshyp 35047 df-lcv 35089 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 df-lvols 35570 df-lines 35571 df-psubsp 35573 df-pmap 35574 df-padd 35866 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 df-tgrp 36813 df-tendo 36825 df-edring 36827 df-dveca 37073 df-disoa 37099 df-dvech 37149 df-dib 37209 df-dic 37243 df-dih 37299 df-doch 37418 df-djh 37465 |
This theorem is referenced by: lcfrlem21 37633 |
Copyright terms: Public domain | W3C validator |