![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2a | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40404. Use lshpat 37926 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2a.h | β’ π» = (LHypβπΎ) |
lclkrlem2a.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2a.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2a.v | β’ π = (Baseβπ) |
lclkrlem2a.z | β’ 0 = (0gβπ) |
lclkrlem2a.p | β’ β = (LSSumβπ) |
lclkrlem2a.n | β’ π = (LSpanβπ) |
lclkrlem2a.a | β’ π΄ = (LSAtomsβπ) |
lclkrlem2a.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2a.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2a.x | β’ (π β π β (π β { 0 })) |
lclkrlem2a.y | β’ (π β π β (π β { 0 })) |
lclkrlem2a.e | β’ (π β ( β₯ β{π}) β ( β₯ β{π})) |
lclkrlem2a.d | β’ (π β Β¬ π β ( β₯ β{π΅})) |
Ref | Expression |
---|---|
lclkrlem2a | β’ (π β (((πβ{π}) β (πβ{π})) β© ( β₯ β{π΅})) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 β’ (LSubSpβπ) = (LSubSpβπ) | |
2 | lclkrlem2a.p | . 2 β’ β = (LSSumβπ) | |
3 | eqid 2733 | . 2 β’ (LSHypβπ) = (LSHypβπ) | |
4 | lclkrlem2a.a | . 2 β’ π΄ = (LSAtomsβπ) | |
5 | lclkrlem2a.h | . . 3 β’ π» = (LHypβπΎ) | |
6 | lclkrlem2a.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
7 | lclkrlem2a.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
8 | 5, 6, 7 | dvhlvec 39980 | . 2 β’ (π β π β LVec) |
9 | lclkrlem2a.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
10 | lclkrlem2a.v | . . 3 β’ π = (Baseβπ) | |
11 | lclkrlem2a.z | . . 3 β’ 0 = (0gβπ) | |
12 | lclkrlem2a.b | . . 3 β’ (π β π΅ β (π β { 0 })) | |
13 | 5, 9, 6, 10, 11, 3, 7, 12 | dochsnshp 40324 | . 2 β’ (π β ( β₯ β{π΅}) β (LSHypβπ)) |
14 | lclkrlem2a.n | . . 3 β’ π = (LSpanβπ) | |
15 | 5, 6, 7 | dvhlmod 39981 | . . 3 β’ (π β π β LMod) |
16 | lclkrlem2a.x | . . 3 β’ (π β π β (π β { 0 })) | |
17 | 10, 14, 11, 4, 15, 16 | lsatlspsn 37863 | . 2 β’ (π β (πβ{π}) β π΄) |
18 | lclkrlem2a.y | . . 3 β’ (π β π β (π β { 0 })) | |
19 | 10, 14, 11, 4, 15, 18 | lsatlspsn 37863 | . 2 β’ (π β (πβ{π}) β π΄) |
20 | lclkrlem2a.e | . . 3 β’ (π β ( β₯ β{π}) β ( β₯ β{π})) | |
21 | 16 | eldifad 3961 | . . . . . . . 8 β’ (π β π β π) |
22 | 21 | snssd 4813 | . . . . . . 7 β’ (π β {π} β π) |
23 | 5, 6, 9, 10, 14, 7, 22 | dochocsp 40250 | . . . . . 6 β’ (π β ( β₯ β(πβ{π})) = ( β₯ β{π})) |
24 | 18 | eldifad 3961 | . . . . . . . 8 β’ (π β π β π) |
25 | 24 | snssd 4813 | . . . . . . 7 β’ (π β {π} β π) |
26 | 5, 6, 9, 10, 14, 7, 25 | dochocsp 40250 | . . . . . 6 β’ (π β ( β₯ β(πβ{π})) = ( β₯ β{π})) |
27 | 23, 26 | eqeq12d 2749 | . . . . 5 β’ (π β (( β₯ β(πβ{π})) = ( β₯ β(πβ{π})) β ( β₯ β{π}) = ( β₯ β{π}))) |
28 | eqid 2733 | . . . . . 6 β’ ((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) | |
29 | 5, 6, 10, 14, 28 | dihlsprn 40202 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβ{π}) β ran ((DIsoHβπΎ)βπ)) |
30 | 7, 21, 29 | syl2anc 585 | . . . . . 6 β’ (π β (πβ{π}) β ran ((DIsoHβπΎ)βπ)) |
31 | 5, 6, 10, 14, 28 | dihlsprn 40202 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβ{π}) β ran ((DIsoHβπΎ)βπ)) |
32 | 7, 24, 31 | syl2anc 585 | . . . . . 6 β’ (π β (πβ{π}) β ran ((DIsoHβπΎ)βπ)) |
33 | 5, 28, 9, 7, 30, 32 | doch11 40244 | . . . . 5 β’ (π β (( β₯ β(πβ{π})) = ( β₯ β(πβ{π})) β (πβ{π}) = (πβ{π}))) |
34 | 27, 33 | bitr3d 281 | . . . 4 β’ (π β (( β₯ β{π}) = ( β₯ β{π}) β (πβ{π}) = (πβ{π}))) |
35 | 34 | necon3bid 2986 | . . 3 β’ (π β (( β₯ β{π}) β ( β₯ β{π}) β (πβ{π}) β (πβ{π}))) |
36 | 20, 35 | mpbid 231 | . 2 β’ (π β (πβ{π}) β (πβ{π})) |
37 | lclkrlem2a.d | . . 3 β’ (π β Β¬ π β ( β₯ β{π΅})) | |
38 | 12 | eldifad 3961 | . . . . . 6 β’ (π β π΅ β π) |
39 | 38 | snssd 4813 | . . . . 5 β’ (π β {π΅} β π) |
40 | 5, 6, 10, 1, 9 | dochlss 40225 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ {π΅} β π) β ( β₯ β{π΅}) β (LSubSpβπ)) |
41 | 7, 39, 40 | syl2anc 585 | . . . 4 β’ (π β ( β₯ β{π΅}) β (LSubSpβπ)) |
42 | 10, 1, 14, 15, 41, 21 | lspsnel5 20606 | . . 3 β’ (π β (π β ( β₯ β{π΅}) β (πβ{π}) β ( β₯ β{π΅}))) |
43 | 37, 42 | mtbid 324 | . 2 β’ (π β Β¬ (πβ{π}) β ( β₯ β{π΅})) |
44 | 1, 2, 3, 4, 8, 13, 17, 19, 36, 43 | lshpat 37926 | 1 β’ (π β (((πβ{π}) β (πβ{π})) β© ( β₯ β{π΅})) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β cdif 3946 β© cin 3948 β wss 3949 {csn 4629 ran crn 5678 βcfv 6544 (class class class)co 7409 Basecbs 17144 0gc0g 17385 LSSumclsm 19502 LSubSpclss 20542 LSpanclspn 20582 LSAtomsclsa 37844 LSHypclsh 37845 HLchlt 38220 LHypclh 38855 DVecHcdvh 39949 DIsoHcdih 40099 ocHcoch 40218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mre 17530 df-mrc 17531 df-acs 17533 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-cntz 19181 df-oppg 19210 df-lsm 19504 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lvec 20714 df-lsatoms 37846 df-lshyp 37847 df-lcv 37889 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tgrp 39614 df-tendo 39626 df-edring 39628 df-dveca 39874 df-disoa 39900 df-dvech 39950 df-dib 40010 df-dic 40044 df-dih 40100 df-doch 40219 df-djh 40266 |
This theorem is referenced by: lclkrlem2b 40379 |
Copyright terms: Public domain | W3C validator |