| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatspn0 | Structured version Visualization version GIF version | ||
| Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lsatspn0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsatspn0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsatspn0.o | ⊢ 0 = (0g‘𝑊) |
| lsatspn0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| isateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| isateln0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lsatspn0 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatspn0.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 2 | lsatspn0.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 3 | isateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴) | |
| 6 | 1, 2, 4, 5 | lsatn0 39171 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 }) |
| 7 | sneq 4587 | . . . . . . . 8 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
| 8 | 7 | fveq2d 6835 | . . . . . . 7 ⊢ (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
| 10 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod) |
| 11 | lsatspn0.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 12 | 1, 11 | lspsn0 20950 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
| 13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 }) |
| 14 | 9, 13 | eqtrd 2768 | . . . . 5 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
| 15 | 14 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 })) |
| 16 | 15 | necon3d 2950 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋 ≠ 0 )) |
| 17 | 6, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋 ≠ 0 ) |
| 18 | lsatspn0.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 19 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod) |
| 20 | isateln0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) |
| 22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 23 | eldifsn 4739 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
| 24 | 21, 22, 23 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 25 | 18, 11, 1, 2, 19, 24 | lsatlspsn 39165 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
| 26 | 17, 25 | impbida 800 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4577 ‘cfv 6489 Basecbs 17127 0gc0g 17350 LModclmod 20802 LSpanclspn 20913 LSAtomsclsa 39146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lsatoms 39148 |
| This theorem is referenced by: lsator0sp 39173 lcfl8b 41676 mapdpglem5N 41849 mapdpglem30a 41867 mapdpglem30b 41868 |
| Copyright terms: Public domain | W3C validator |