Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatspn0 | Structured version Visualization version GIF version |
Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
lsatspn0.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatspn0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatspn0.o | ⊢ 0 = (0g‘𝑊) |
lsatspn0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
isateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
isateln0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lsatspn0 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatspn0.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
2 | lsatspn0.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
3 | isateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod) |
5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴) | |
6 | 1, 2, 4, 5 | lsatn0 36940 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 }) |
7 | sneq 4568 | . . . . . . . 8 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
8 | 7 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
9 | 8 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
10 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod) |
11 | lsatspn0.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | 1, 11 | lspsn0 20185 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 }) |
14 | 9, 13 | eqtrd 2778 | . . . . 5 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
15 | 14 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 })) |
16 | 15 | necon3d 2963 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋 ≠ 0 )) |
17 | 6, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋 ≠ 0 ) |
18 | lsatspn0.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
19 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod) |
20 | isateln0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) |
22 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
23 | eldifsn 4717 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
24 | 21, 22, 23 | sylanbrc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
25 | 18, 11, 1, 2, 19, 24 | lsatlspsn 36934 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
26 | 17, 25 | impbida 797 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LModclmod 20038 LSpanclspn 20148 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-mgp 19636 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lsatoms 36917 |
This theorem is referenced by: lsator0sp 36942 lcfl8b 39445 mapdpglem5N 39618 mapdpglem30a 39636 mapdpglem30b 39637 |
Copyright terms: Public domain | W3C validator |