Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatspn0 Structured version   Visualization version   GIF version

Theorem lsatspn0 36700
Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
lsatspn0.v 𝑉 = (Base‘𝑊)
lsatspn0.n 𝑁 = (LSpan‘𝑊)
lsatspn0.o 0 = (0g𝑊)
lsatspn0.a 𝐴 = (LSAtoms‘𝑊)
isateln0.w (𝜑𝑊 ∈ LMod)
isateln0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsatspn0 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))

Proof of Theorem lsatspn0
StepHypRef Expression
1 lsatspn0.o . . . 4 0 = (0g𝑊)
2 lsatspn0.a . . . 4 𝐴 = (LSAtoms‘𝑊)
3 isateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
43adantr 484 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod)
5 simpr 488 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴)
61, 2, 4, 5lsatn0 36699 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 })
7 sneq 4537 . . . . . . . 8 (𝑋 = 0 → {𝑋} = { 0 })
87fveq2d 6699 . . . . . . 7 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
98adantl 485 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
104adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod)
11 lsatspn0.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
121, 11lspsn0 19999 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
1310, 12syl 17 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 })
149, 13eqtrd 2771 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1514ex 416 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 }))
1615necon3d 2953 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋0 ))
176, 16mpd 15 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋0 )
18 lsatspn0.v . . 3 𝑉 = (Base‘𝑊)
193adantr 484 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LMod)
20 isateln0.x . . . . 5 (𝜑𝑋𝑉)
2120adantr 484 . . . 4 ((𝜑𝑋0 ) → 𝑋𝑉)
22 simpr 488 . . . 4 ((𝜑𝑋0 ) → 𝑋0 )
23 eldifsn 4686 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2421, 22, 23sylanbrc 586 . . 3 ((𝜑𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2518, 11, 1, 2, 19, 24lsatlspsn 36693 . 2 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
2617, 25impbida 801 1 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  cdif 3850  {csn 4527  cfv 6358  Basecbs 16666  0gc0g 16898  LModclmod 19853  LSpanclspn 19962  LSAtomsclsa 36674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-mgp 19459  df-ring 19518  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lsatoms 36676
This theorem is referenced by:  lsator0sp  36701  lcfl8b  39204  mapdpglem5N  39377  mapdpglem30a  39395  mapdpglem30b  39396
  Copyright terms: Public domain W3C validator