Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatspn0 Structured version   Visualization version   GIF version

Theorem lsatspn0 35529
Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
lsatspn0.v 𝑉 = (Base‘𝑊)
lsatspn0.n 𝑁 = (LSpan‘𝑊)
lsatspn0.o 0 = (0g𝑊)
lsatspn0.a 𝐴 = (LSAtoms‘𝑊)
isateln0.w (𝜑𝑊 ∈ LMod)
isateln0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsatspn0 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))

Proof of Theorem lsatspn0
StepHypRef Expression
1 lsatspn0.o . . . 4 0 = (0g𝑊)
2 lsatspn0.a . . . 4 𝐴 = (LSAtoms‘𝑊)
3 isateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
43adantr 473 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod)
5 simpr 477 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴)
61, 2, 4, 5lsatn0 35528 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 })
7 sneq 4445 . . . . . . . 8 (𝑋 = 0 → {𝑋} = { 0 })
87fveq2d 6497 . . . . . . 7 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
98adantl 474 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
104adantr 473 . . . . . . 7 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod)
11 lsatspn0.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
121, 11lspsn0 19492 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
1310, 12syl 17 . . . . . 6 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 })
149, 13eqtrd 2808 . . . . 5 (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1514ex 405 . . . 4 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 }))
1615necon3d 2982 . . 3 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋0 ))
176, 16mpd 15 . 2 ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋0 )
18 lsatspn0.v . . 3 𝑉 = (Base‘𝑊)
193adantr 473 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LMod)
20 isateln0.x . . . . 5 (𝜑𝑋𝑉)
2120adantr 473 . . . 4 ((𝜑𝑋0 ) → 𝑋𝑉)
22 simpr 477 . . . 4 ((𝜑𝑋0 ) → 𝑋0 )
23 eldifsn 4587 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
2421, 22, 23sylanbrc 575 . . 3 ((𝜑𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2518, 11, 1, 2, 19, 24lsatlspsn 35522 . 2 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
2617, 25impbida 788 1 (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wne 2961  cdif 3822  {csn 4435  cfv 6182  Basecbs 16329  0gc0g 16559  LModclmod 19346  LSpanclspn 19455  LSAtomsclsa 35503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-mgp 18953  df-ring 19012  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lsatoms 35505
This theorem is referenced by:  lsator0sp  35530  lcfl8b  38033  mapdpglem5N  38206  mapdpglem30a  38224  mapdpglem30b  38225
  Copyright terms: Public domain W3C validator