![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatspn0 | Structured version Visualization version GIF version |
Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
lsatspn0.v | β’ π = (Baseβπ) |
lsatspn0.n | β’ π = (LSpanβπ) |
lsatspn0.o | β’ 0 = (0gβπ) |
lsatspn0.a | β’ π΄ = (LSAtomsβπ) |
isateln0.w | β’ (π β π β LMod) |
isateln0.x | β’ (π β π β π) |
Ref | Expression |
---|---|
lsatspn0 | β’ (π β ((πβ{π}) β π΄ β π β 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatspn0.o | . . . 4 β’ 0 = (0gβπ) | |
2 | lsatspn0.a | . . . 4 β’ π΄ = (LSAtomsβπ) | |
3 | isateln0.w | . . . . 5 β’ (π β π β LMod) | |
4 | 3 | adantr 479 | . . . 4 β’ ((π β§ (πβ{π}) β π΄) β π β LMod) |
5 | simpr 483 | . . . 4 β’ ((π β§ (πβ{π}) β π΄) β (πβ{π}) β π΄) | |
6 | 1, 2, 4, 5 | lsatn0 38499 | . . 3 β’ ((π β§ (πβ{π}) β π΄) β (πβ{π}) β { 0 }) |
7 | sneq 4632 | . . . . . . . 8 β’ (π = 0 β {π} = { 0 }) | |
8 | 7 | fveq2d 6894 | . . . . . . 7 β’ (π = 0 β (πβ{π}) = (πβ{ 0 })) |
9 | 8 | adantl 480 | . . . . . 6 β’ (((π β§ (πβ{π}) β π΄) β§ π = 0 ) β (πβ{π}) = (πβ{ 0 })) |
10 | 4 | adantr 479 | . . . . . . 7 β’ (((π β§ (πβ{π}) β π΄) β§ π = 0 ) β π β LMod) |
11 | lsatspn0.n | . . . . . . . 8 β’ π = (LSpanβπ) | |
12 | 1, 11 | lspsn0 20894 | . . . . . . 7 β’ (π β LMod β (πβ{ 0 }) = { 0 }) |
13 | 10, 12 | syl 17 | . . . . . 6 β’ (((π β§ (πβ{π}) β π΄) β§ π = 0 ) β (πβ{ 0 }) = { 0 }) |
14 | 9, 13 | eqtrd 2765 | . . . . 5 β’ (((π β§ (πβ{π}) β π΄) β§ π = 0 ) β (πβ{π}) = { 0 }) |
15 | 14 | ex 411 | . . . 4 β’ ((π β§ (πβ{π}) β π΄) β (π = 0 β (πβ{π}) = { 0 })) |
16 | 15 | necon3d 2951 | . . 3 β’ ((π β§ (πβ{π}) β π΄) β ((πβ{π}) β { 0 } β π β 0 )) |
17 | 6, 16 | mpd 15 | . 2 β’ ((π β§ (πβ{π}) β π΄) β π β 0 ) |
18 | lsatspn0.v | . . 3 β’ π = (Baseβπ) | |
19 | 3 | adantr 479 | . . 3 β’ ((π β§ π β 0 ) β π β LMod) |
20 | isateln0.x | . . . . 5 β’ (π β π β π) | |
21 | 20 | adantr 479 | . . . 4 β’ ((π β§ π β 0 ) β π β π) |
22 | simpr 483 | . . . 4 β’ ((π β§ π β 0 ) β π β 0 ) | |
23 | eldifsn 4784 | . . . 4 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
24 | 21, 22, 23 | sylanbrc 581 | . . 3 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
25 | 18, 11, 1, 2, 19, 24 | lsatlspsn 38493 | . 2 β’ ((π β§ π β 0 ) β (πβ{π}) β π΄) |
26 | 17, 25 | impbida 799 | 1 β’ (π β ((πβ{π}) β π΄ β π β 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β cdif 3936 {csn 4622 βcfv 6541 Basecbs 17177 0gc0g 17418 LModclmod 20745 LSpanclspn 20857 LSAtomsclsa 38474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-plusg 17243 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-grp 18895 df-minusg 18896 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lsatoms 38476 |
This theorem is referenced by: lsator0sp 38501 lcfl8b 41005 mapdpglem5N 41178 mapdpglem30a 41196 mapdpglem30b 41197 |
Copyright terms: Public domain | W3C validator |