Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatspn0 | Structured version Visualization version GIF version |
Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
lsatspn0.v | ⊢ 𝑉 = (Base‘𝑊) |
lsatspn0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsatspn0.o | ⊢ 0 = (0g‘𝑊) |
lsatspn0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
isateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
isateln0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lsatspn0 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatspn0.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
2 | lsatspn0.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
3 | isateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑊 ∈ LMod) |
5 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ∈ 𝐴) | |
6 | 1, 2, 4, 5 | lsatn0 37225 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑁‘{𝑋}) ≠ { 0 }) |
7 | sneq 4579 | . . . . . . . 8 ⊢ (𝑋 = 0 → {𝑋} = { 0 }) | |
8 | 7 | fveq2d 6813 | . . . . . . 7 ⊢ (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
9 | 8 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{ 0 })) |
10 | 4 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → 𝑊 ∈ LMod) |
11 | lsatspn0.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | 1, 11 | lspsn0 20341 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
13 | 10, 12 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{ 0 }) = { 0 }) |
14 | 9, 13 | eqtrd 2777 | . . . . 5 ⊢ (((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
15 | 14 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 })) |
16 | 15 | necon3d 2962 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → ((𝑁‘{𝑋}) ≠ { 0 } → 𝑋 ≠ 0 )) |
17 | 6, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ∈ 𝐴) → 𝑋 ≠ 0 ) |
18 | lsatspn0.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
19 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod) |
20 | isateln0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
21 | 20 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) |
22 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
23 | eldifsn 4730 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
24 | 21, 22, 23 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
25 | 18, 11, 1, 2, 19, 24 | lsatlspsn 37219 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) |
26 | 17, 25 | impbida 798 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∖ cdif 3893 {csn 4569 ‘cfv 6463 Basecbs 16979 0gc0g 17217 LModclmod 20194 LSpanclspn 20304 LSAtomsclsa 37200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-mgp 19788 df-ring 19852 df-lmod 20196 df-lss 20265 df-lsp 20305 df-lsatoms 37202 |
This theorem is referenced by: lsator0sp 37227 lcfl8b 39730 mapdpglem5N 39903 mapdpglem30a 39921 mapdpglem30b 39922 |
Copyright terms: Public domain | W3C validator |